

CHAPTER 13 GRAPH ALGORITHMS

Q

0

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO

GRAPH

 \bigcirc

 \bigcirc

O

6

 \bigcirc

• A graph is a pair G = (V, E), where

- V is a set of nodes, called vertices
- E is a collection of pairs of vertices, called edges
- Vertices and edges can store arbitrary elements
- Example:
 - A vertex represents an airport and stores the three-letter airport code
 - An edge represents a flight route between two airports and stores the mileage of the route

EDGE & GRAPH TYPES

• Edge Types

D

 \bigcirc

 \bigcirc

 \bigcirc

6

- Directed edge
 - ordered pair of vertices (u, v)
 - first vertex u is the origin/source
 - second vertex v is the destination/target
 - e.g., a flight
- Undirected edge
 - unordered pair of vertices (u, v)
 - e.g., a flight route
- Weighted edge
- Graph Types
 - Directed graph (Digraph)
 - all the edges are directed
 - e.g., route network
 - Undirected graph
 - all the edges are undirected
 - e.g., flight network
 - Weighted graph
 - all the edges are weighted

APPLICATIONS

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - Entity-relationship diagram

λ

 \mathcal{O}

 \bigcirc

O

6

6

 \bigcirc

O

 \bigcirc

 \bigcirc

O

6

 \bigcirc

- End points (or end vertices) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - X has degree 5
- Parallel (multiple) edges
 - *h* and *i* are parallel edges
- Self-loop
 - *j* is a self-loop

 \mathbf{O}

 \bigcirc

O

6

 \bigcirc

- Outgoing edges of a vertex
 - h and b are the outgoing edges of X
- Incoming edges of a vertex
 - e, g, and i are incoming edges of X
- In-degree of a vertex
 - X has in-degree 3
- Out-degree of a vertex
 - X has out-degree 2

Path

۲

O

 \bigcirc

 \bigcirc

0

9

 \bigcirc

- Sequence of alternating vertices and edges
- Begins with a vertex
- Ends with a vertex
- Each edge is preceded and followed by its endpoints
- Simple path
 - Path such that all its vertices and edges are distinct
- Examples
 - $P_1 = \{V, b, X, h, Z\}$ is a simple path
 - $P_2 = \{U, c, W, e, X, g, Y, f, W, d, V\}$ is a path that is not simple

Cycle

O

 \bigcirc

 \bigcirc

 \mathcal{O}

9

Q

- Circular sequence of alternating vertices and edges
- Each edge is preceded and followed by its endpoints

Simple cycle

- Cycle such that all its vertices and edges are distinct
- Examples
 - $C_1 = \{V, b, X, g, Y, f, W, c, U, a, V\}$ is a simple cycle
 - $C_2 = \{U, c, W, e, X, g, Y, f, W, d, V, a, U\}$ is a cycle that is not simple

EXERCISE ON TERMINOLOGY

1. Number of vertices?

 \bigcirc

6

- 2. Number of edges?
- 3. What type of the graph is it?
- 4. Show the end vertices of the edge with largest weight
- 5. Show the vertices of smallest degree and largest degree
- 6. Show the edges incident to the vertices in the above question
- 7. Identify the shortest simple path from HNL to PVD
- 8. Identify the simple cycle with the most edges

EXERCISE PROPERTIES OF UNDIRECTED GRAPHS

• Property 1 – Total degree $\Sigma_v deg(v) = ?$

 \bigcirc

Q

- Property 2 Total number of edges
 - In an undirected graph with no selfloops and no multiple edges
 m ≤ Upper Bound?
 Lower Bound? ≤ m

Notation

ullet

ightarrow

- n number of vertices
- m number of edges
- deg(v) degree of vertex v

EXERCISE PROPERTIES OF UNDIRECTED GRAPHS

Property 1 – Total degree $\Sigma_v deg(v) = 2m$

O

 \bigcirc

 \bigcirc

 \bigcirc

Q

- Property 2 Total number of edges
 - In an undirected graph with no self-loops and no multiple edges

 $m \le \frac{n(n-1)}{2}$ $0 \le m$

Proof: Each vertex can have degree at most (n-1)

Notation

 \bullet

- n
 - *m* number of edges
- deg(*v*)
- degree of vertex v

number of vertices

EXERCISE PROPERTIES OF DIRECTED GRAPHS

 Property 1 – Total in-degree and outdegree

 \bigcirc

Q

- $\Sigma_v in \deg(v) =?$ $\Sigma_v out - \deg(v) =?$
- Property 2 Total number of edges
 In an directed graph with no self-loops and no multiple edges m ≤ UpperBound? LowerBound? ≤ m

- Notation
 - n
 - *m*
- number of vertices
- number of edges
- deg(v) degree of vertex v

A graph with given number of vertices (4) and maximum number of edges

EXERCISE PROPERTIES OF DIRECTED GRAPHS

 Property 1 – Total in-degree and outdegree

 \bigcirc

Q

- $\Sigma_{v}in \deg(v) = m$ $\Sigma_{v}out - \deg(v) = m$
- Property 2 Total number of edges
 - In an directed graph with no self-loops and no multiple edges $m \le n(n-1)$ $0 \le m$

- Notation
 - n
 - *m*
- number of vertices number of edges
- deg(v) degree of vertex v

- n = 4
 - *m* = 12
 - $\deg(v) = 6$

A graph with given number of vertices (4) and maximum number of edges

SUBGRAPHS

 \bigcirc

 \bigcirc

6

- A subgraph S of a graph G is a graph such that
 - The vertices of S are a subset of the vertices of G
 - The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G

CONNECTIVITY

Q

- A graph is connected if there is a path between every pair of vertices
- A connected component of a graph
 G is a maximal connected subgraph
 of G

TREES AND FORESTS

- A (free) tree is an undirected graph T such that
 - T is connected

 \bigcirc

O

6

 \bigcirc

- T has no cycles
- This definition of tree is different from the one of a rooted tree
- A forest is an undirected graph without cycles
- The connected components of a forest are trees

Forest

SPANNING TREES AND FORESTS

• A spanning tree of a connected graph is a spanning subgraph that is a tree

Q

- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest

GRAPH ADT

- Vertices and edges are positions and store elements
- Vertex ADT

O

 \bigcirc

O

6

6

Ò

- operator * ()
- incidentEdges()
- isAdjacentTo(v)
- Edge ADT
 - operator * ()
 - endVertices()
 - opposite(v)
 - isAdjacentTo(*f*)
 - isIncidentOn(*v*)
 - isDirected()
 - origin()
 - dest()

- Graph ADT
 - vertices()
 - edges()
 - insertVertex(*x*)
 - insertEdge(v, w, x)
 - insertDirectedEdge(v, w, x)
 - eraseVertex(v)
 - eraseEdge(*e*)
- Many more generic/accessor methods
- Lists of entities provide iterators

EXERCISE ON ADT

D

 \bigcirc

 \bigcirc

6

ord.incidentEdges()
 ord.adjacentVertices()
 ord.degree()
 (lga,mia).endVertices()
 (dfw,lga).opposite(dfw)
 dfw.isAdjacentTo(sfo)

7. insertVertex(*iah*)
8. insertEdge(*mia*, *pvd*, 1200)
9. eraseVertex(*ord*)
10. eraseEdge(*dfw*, *ord*)
11. (*dfw*, *lga*). isDirected()
12. (*dfw*, *lga*). origin()
13. (*dfw*, *lga*). dest()

EDGE LIST STRUCTURE

 \mathcal{O}

 \bigcirc

O

6

 An edge list can be stored in a sequence, a vector, a list or a dictionary such as a hash table

EXERCISE EDGE LIST STRUCTURE

• Construct the edge list for the following graph

 \mathcal{O}

 \bigcirc

 \bigcirc

O

9

Ċ

ASYMPTOTIC PERFORMANCE EDGE LIST STRUCTURE

 <i>n</i> vertices, <i>m</i> edges No parallel edges No self-loops 	Edge List
Space	?
endVertices(), opposite(), isIncidentOn(v)	?
<pre>v.incidentEdges(), v.isAdjacentTo(w)</pre>	?
insertVertex(x), insertEdge(u, v, w), eraseEdge(e)	?
eraseVertex(v)	?

S

Q

Ò

O

 \mathcal{O}

6

ASYMPTOTIC PERFORMANCE EDGE LIST STRUCTURE

Q

Ò

O

 \mathcal{O}

6

 <i>n</i> vertices, <i>m</i> edges No parallel edges No self-loops 	Edge List
Space	O(n+m)
endVertices(), opposite(), isIncidentOn(v)	0(1)
<pre>v.incidentEdges(), v.isAdjacentTo(w)</pre>	O(m)
insertVertex (x) , insertEdge (u, v, w) , eraseEdge (e)	0(1)
eraseVertex(v)	O(m)

EDGE LIST STRUCTURE

• Vertex object

 \bigcirc

 \bigcirc

 \bigcirc

6

- element
- reference to position in vertex sequence
- Edge object
 - element
 - origin vertex object
 - destination vertex object
 - reference to position in edge sequence
- Vertex sequence
 - sequence of vertex objects
- Edge sequence
 - sequence of edge objects

ML

EXERCISE ADJACENCY LIST STRUCTURE

Construct the adjacency list for the following graph

 \mathcal{O}

 \bigcirc

 \bigcirc

O

6

ASYMPTOTIC PERFORMANCE ADJACENCY LIST STRUCTURE

 \mathcal{O}

 \bigcirc

 \bigcirc

 \mathcal{O}

6

 \bigcirc

 \bigcirc

 <i>n</i> vertices, <i>m</i> edges No parallel edges No self-loops 	Adjacency List	Adjacency List ORD-(ORD, PVD)-(ORD, DFW)
Space	?	LGA (LGA, PVD) (LGA, MIA) (LGA, DFW
endVertices(), opposite(), isIncidentOn(v)	?	PVD-(PVD, ORD)-(PVD, LGA) DFW-(DFW, ORD)-(DFW, LGA)-(DFW, MIA
<pre>v.incidentEdges(), v.isAdjacentTo(w)</pre>	?	MIA (MIA, LGA) (MIA, DFW)
insertVertex(x), insertEdge(u, v, w), eraseEdge(e)	?	
eraseVertex(v)	?	

(

ASYMPTOTIC PERFORMANCE ADJACENCY LIST STRUCTURE

Q

 \bigcirc

 \bigcirc

 \mathcal{O}

6

Ċ

 <i>n</i> vertices, <i>m</i> edges No parallel edges No self-loops 	Adjacency List	Adjacency List ORD (ORD, PVD) (ORD, DFW)
Space	O(n+m)	LGA (LGA, PVD) (LGA, MIA) (LGA, DFW)
endVertices(), opposite(), isIncidentOn(v)	0(1)	PVD-(PVD, ORD)-(PVD, LGA) DFW-(DFW, ORD)-(DFW, LGA)-(DFW, MIA)
<pre>v.incidentEdges(), v.isAdjacentTo(w)</pre>	$O(\deg(v))$ $O(\min(\deg(v), \deg(w)))$	MIA (MIA, LGA) (MIA, DFW)
<pre>insertVertex(x), insertEdge(u, v, w), eraseEdge(e)</pre>	0(1)	
eraseVertex(v)	$O(\deg(v))$	

ADJACENCY LIST STRUCTURE

- Store vertex sequence and edge sequence
- Each vertex stores a sequence of incident edges
 - Sequence of references to edge objects of incident edges
- Augmented edge objects

Q

 References to associated positions in incidence sequences of end vertices

ADJACENCY MATRIX STRUCTURE

 \mathcal{O}

 \bigcirc

 \bigcirc

9

 \bigcirc

 Adjacency matrices store edges in a table, indexed by the vertex

EXERCISE ADJACENCY MATRIX STRUCTURE

• Construct the adjacency matrix for the following graph

 \mathcal{O}

 \bigcirc

 \bigcirc

O

6

ADJACENCY MATRIX STRUCTURE IN A WEIGHTED GRAPH

	0 ORD	1 LGA	2 PVD	3 DFW	4 MIA
0 ORD	0	0	849	802	0
1 LGA	0	0	142	1387	1099
2 PVD	849	142	0	0	0
3 DFW	802	138	0	0	1120
4 O MIA	0	1099	0	1120	0

 \mathcal{O}

 \bigcirc

 \bigcirc

 \bigcirc

6

 \bigcirc

 \bigcirc

 Store edge object/property in table, or include a pointer to it inside of the table

EXERCISE ADJACENCY MATRIX STRUCTURE: WEIGHTED DIGRAPH

 \mathcal{O}

 \bigcirc

 \bigcirc

O

6

EXERCISE ADJACENCY MATRIX STRUCTURE: WEIGHTED DIGRAPH

0 1 2 3 4 ORD LGA PVD DFW MIA

 \mathcal{O}

 \bigcirc

 \bigcirc

O

6

Ò

0 ORD	0	0	849	0	0
1 LGA	0	0	0	1387	1099
2 PVD	0	142	0	0	0
3 DFW	802	0	0	0	0
4 O MIA	0	0	0	1120	0

ASYMPTOTIC PERFORMANCE OF ADJACENCY MATRIX STRUCTURE

 <i>n</i> vertices, <i>m</i> edges No parallel edges No self-loops 	Adjacency Matrix
Space	?
endVertices(), opposite(), isIncidentOn(v), v.isAdjacentTo(w)	?
v.incidentEdges()	?
insertEdge(<i>u, v, w</i>), eraseEdge(<i>e</i>)	?
insertVertex (x) , eraseVertex (v)	?

 \mathcal{O}

 \bigcirc

 \bigcirc

 \bigcirc

Q

0 1 2 3 4

0	0	0	1	1	0
1	0	0	1	1	1
2	1	1	0	0	0
3	1	1	0	0	1
4	0	1	0	1	0

ASYMPTOTIC PERFORMANCE OF ADJACENCY MATRIX STRUCTURE

 <i>n</i> vertices, <i>m</i> edges No parallel edges No self-loops 	Adjacency Matrix
Space	$O(n^2)$
endVertices(), opposite(), isIncidentOn(v), v.isAdjacentTo(w)	0(1)
v.incidentEdges()	O(n)
insertEdge(<i>u, v, w</i>), eraseEdge(<i>e</i>)	0(1)
insertVertex (x) , eraseVertex (v)	$O(n^2)$

 \mathcal{O}

 \bigcirc

 \bigcirc

 \bigcirc

Q

0 1 2 3 4

)	0	0	1	1	0
1	0	0	1	1	1
2	1	1	0	0	0
3	1	1	0	0	1
1	0	1	0	1	0

ADJACENCY MATRIX STRUCTURE

• Augmented vertex objects

Q

- Integer key (index) associated with vertex
- 2D-array adjacency array
 - Reference to edge object for adjacent vertices
 - Null for non nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge

а

ASYMPTOTIC PERFORMANCE

ď

 \bigcirc

O

6

6

 \bigcirc

 \bigcirc

 <i>n</i> vertices, <i>m</i> edges No parallel edges No self-loops 	Edge List	Adjacency List	Adjacency Matrix
Space	O(n+m)	O(n+m)	$O(n^2)$
endVertices(), opposite(), isIncidentOn(v)	0(1)	0(1)	0(1)
v.incidentEdges()	O(m)	$O(\deg(v))$	O(n)
v.isAdjacentTo(w)	O(m)	$O(\min(\deg(v), \deg(w)))$	0(1)
insertEdge(<i>u</i> , <i>v</i> , <i>w</i>), eraseEdge(<i>e</i>)	0(1)	0(1)	0(1)
insertVertex(x)	0(1)	0(1)	$O(n^2)$
eraseVertex(v)	O(m)	$O(\deg(v))$	$O(n^2)$

 \bigcirc

 \bigcirc

DEPTH-FIRST SEARCH

DEPTH-FIRST SEARCH

- Depth-first search (DFS) is a general technique for traversing a graph
- A DFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- DFS on a graph with n vertices and m edges takes O(n + m) time
- DFS can be further extended to solve other graph problems
 - Find and report a path between two given vertices
 - Find a cycle in the graph
- Depth-first search is to graphs what Euler tour is to binary trees

Q

DFS AND MAZE TRAVERSAL

- The DFS algorithm is similar to a classic strategy for exploring a maze
 - We mark each intersection, corner and dead end (vertex) visited
 - We mark each corridor (edge) traversed
 - We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)

Ç

Q

DFS ALGORITHM

The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm DFS(G)

Input: Graph G

2.

6.

Q

Output: Labeling of the edges of G as discovery edges

and back edges

- for each $v \in G$.vertices() do 1.
 - v.setLabel(UNEXPLORED)
- 3. for each $e \in G$.edges() do
- 4. e.setLabel(UNEXPLORED)
- 5. for each $v \in G$.vertices() do
- if v.getLabel() = UNEXPLORED 7.
 - DFS(G, v)

EXERCISE DFS ALGORITHM

O

 \bigcirc

 \bigcirc

Q

 \bigcirc

• Perform DFS of the following graph, start from vertex A

- Assume adjacent edges are processed in alphabetical order
- Number vertices in the order they are visited
- Label edges as discovery or back edges

PROPERTIES OF DFS

Property 1

 \bigcirc

 \bigcirc

 \bigcirc

6

- DFS(G, v) visits all the vertices and edges in the connected component of v
- Property 2
 - The discovery edges labeled by DFS(G, v) form a spanning tree of the connected component of v

ANALYSIS OF DFS

- Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as *VISITED*

 \bigcirc

6

- Each edge is labeled twice
 - once as UNEXPLORED
 - once as *DISCOVERY* or *BACK*

ANALYSIS OF DFS

- DFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
 - Recall that $\Sigma_v \deg(v) = 2m$

Algorithm DFS(G)

Input: Graph G

Q

Output: Labeling of the edges of G as discovery edges

and back edges

- for each $v \in G$.vertices() do O(n)
- **2.** *v*. setLabel(*UNEXPLORED*)
- **3.** for each $e \in G$.edges() do O(m)
- 4. *e*.setLabel(*UNEXPLORED*)
- **5.** for each $v \in G$.vertices() do O(n+m)
 - **if** v.getLabel() = UNEXPLORED
 - DFS(G, v)

6. 7.

APPLICATION PATH FINDING

- We can specialize the DFS algorithm to find a path between two given vertices u and z using the template method pattern
- We call DFS(G, u) with u as the start vertex
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex z is encountered, we return the path as the contents of the stack

Algorithm pathDFS(G, v, z) v. setLabel(VISITED) S. push(v)**3.** if v = z**return** *S*. elements() for each $e \in v$.incidentEdges() do 5. 6. **if** *e*.getLabel() = UNEXPLORED) 7. $w \leftarrow e.$ opposite(v) 8. **if** *w*.getLabel() = *UNEXPLORED* 9. *e*.setLabel(*DISCOVERY*) 10. S. push(e) 11. pathDFS(G,w) 12. S.pop() 13. else 14. e.setLabel(BACK) 15. S.pop()

 \bigcirc

 \bigcirc

Q

APPLICATION CYCLE FINDING

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex w

Algorithm cycleDFS(G, v, z) v.setLabel(VISITED) 3. for each $e \in v$. incidentEdges() do **if** *e*.getLabel() = UNEXPLORED) 4. 5. $w \leftarrow e.opposite(v)$ 6. S. push(e) 7. **if** w.getLabel() = UNEXPLORED 8. *e*.setLabel(*DISCOVERY*) 9. cycleDFS(G,w) 10. S.pop() 11. else 12. $T \leftarrow \text{empty stack}$ 13. repeat T. push(S. top())14. 15. S.pop() **until** T.top() = w16. 17. return T. elements() 18. S.pop()

 \bigcirc

 \bigcirc

Q

 \bigcirc

 \bigcirc

BREADTH-FIRST SEARCH

BREADTH-FIRST SEARCH

- Breadth-first search (BFS) is a general technique for traversing a graph
- A BFS traversal of a graph G

Q

- Visits all the vertices and edges of G
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G

- BFS on a graph with n vertices and m edges takes O(n + m) time
- BFS can be further extended to solve other graph problems
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one

EXAMPLE

A

A

unexplored vertex visited vertex unexplored edge discovery edge

− - ► cross edge

 L_0 **(** A L_1 C **(**B) $\left(\mathsf{D}\right)$ Ε F L_0 **(** A \boldsymbol{L}_1 D C B Е F

Ç

 \mathcal{O}

 \bigcirc

 \bigcirc

O

6

 \bigcirc

BFS ALGORITHM

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm BFS(G)

Input: Graph G

Q

Output: Labeling of the edges and partition of the vertices of G

- **1.** for each $v \in G$.vertices() do
- **2.** *v*.setLabel(*UNEXPLORED*)
- **3.** for each $e \in G$.edges() do
- 4. *e*.setLabel(*UNEXPLORED*)
- **5.** for each $v \in G$.vertices() do
- **6.** if v.getLabel() = UNEXPLORED
- **7.** BFS(G, v)

Algorithm BFS(G, s) 1. $L_0 \leftarrow \{s\}$ *2. s*.setLabel(*VISITED*) $3. i \leftarrow 0$ **4.** while $\neg L_i$. empty() do 5. $L_{i+1} \leftarrow \emptyset$ 6. for each $v \in L_i$ do 7. for each $e \in v$.incidentEdges() do 8. if e.getLabel() = UNEXPLORED9. $w \leftarrow e.$ opposite(v) 10. if w.getLabel() = UNEXPLORED11. e.setLabel(DISCOVERY) 12. w. setLabel(VISITED) 13. $\overline{L_{i+1}} \leftarrow \overline{L_{i+1}} \cup \{w\}$ 14. else 15. e.setLabel(CROSS) **16.** $i \leftarrow i + 1$

EXERCISE BFS ALGORITHM

• Perform BFS of the following graph, start from vertex A

- Assume adjacent edges are processed in alphabetical order
- Number vertices in the order they are visited and note the level they are in
- Label edges as discovery or cross edges

O

 \bigcirc

Q

PROPERTIES

Notation

 \bigcirc

 \bigcirc

O

6

 \bigcirc

- G_s : connected component of s
- Property 1
 - BFS(G, s) visits all the vertices and edges of G_s
- Property 2
 - The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s
- Property 3
 - For each vertex $v \in L_i$
 - The path of T_s from s to v has i edges
 - Every path from s to v in G_s has at least i edges

ANALYSIS

Q

- Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence L_i
- Method incidentEdges() is called once for each vertex
- BFS runs in O(n+m) time provided the graph is represented by the adjacency list structure
 - Recall that $\Sigma_v \deg(v) = 2m$

ANALYSIS OF BFS

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm BFS(G)

Input: Graph G

Q

Output: Labeling of the edges and partition of the vertices of G

- **1.** for each $v \in G$.vertices() do O(n)
- **2.** *v*. setLabel(*UNEXPLORED*)
- **3.** for each $e \in G$.edges() do O(m)
- **4.** *e*.setLabel(*UNEXPLORED*)
- **5.** for each $v \in G$.vertices() do O(n+m)
- **6.** if v.getLabel() = UNEXPLORED
- **7.** BFS(*G*, *v*)

Algorithm BFS(G, s) 1. $L_0 \leftarrow \{s\}$ *2.* s. setLabel(*VISITED*) $3. i \leftarrow 0$ **4.** while $\neg L_i$. empty() do 5. $L_{i+1} \leftarrow \emptyset$ O(deg(v))for each $v \in L_i$ do 6. 7. for each $e \in v$. incidentEdges() do 8. if e.getLabel() = UNEXPLORED9. $w \leftarrow e.opposite(v)$ 10. if w.getLabel() = UNEXPLORED11. e.setLabel(DISCOVERY) 12. w.setLabel(VISITED) 13. $L_{i+1} \leftarrow L_{i+1} \cup \{w\}$ 14. else 15. e.setLabel(CROSS) **16.** $i \leftarrow i + 1$

APPLICATIONS

Q

- Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n + m) time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

DFS VS. BFS

6

 \bigcirc

O

0

6

 \mathbf{Q}

 \bigcirc

 \bigcirc

Applications	DFS	BFS
Spanning forest, connected components, paths, cycles	\checkmark	\checkmark
Shortest paths		\checkmark
Biconnected components	\checkmark	

 \circ

DFS VS. BFS

D

 \bigcirc

O

9

 \bigcirc

Back edge (v, w)

• w is an ancestor of v in the tree of discovery edges

Cross edge (v, w)

 w is in the same level as v or in the next level in the tree of discovery edges

