

GRAPH ALGORITHMS
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO

GRAPH

- A graph is a pair $G=(V, E)$, where
- V is a set of nodes, called vertices
- E is a collection of pairs of vertices, called edges
- Vertices and edges can store arbitrary elements
- Example:
- A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the mileage of the route

EDGE \& GRAPH TYPES

- Edge Types
- Directed edge
- ordered pair of vertices (u, v)
- first vertex u is the origin/source
- second vertex v is the destination/target
- e.g., a flight
- Undirected edge
- unordered pair of vertices (u, v)
- e.g., a flight route
- Weighted edge
- Graph Types
- Directed graph (Digraph)
- all the edges are directed
- e.g., route network
- Undirected graph
- all the edges are undirected
- e.g., flight network
- Weighted graph
- all the edges are weighted

$$
(u, v)
$$

802 miles

APPLICATIONS

- Electronic circuits
- Printed circuit board
- Integrated circuit
- Transportation networks
- Highway network
- Flight network
- Computer networks
- Local area network
- Internet
- Web
- Databases
- Entity-relationship diagram

TERMINOLOGY

- End points (or end vertices) of an edge
- U and V are the endpoints of a
- Edges incident on a vertex
- a, d, and b are incident on V
- Adjacent vertices
- U and V are adjacent
- Degree of a vertex
- X has degree 5
- Parallel (multiple) edges

- h and i are parallel edges
- Self-loop
- j is a self-loop

TERMINOLOGY

- Outgoing edges of a vertex
- h and b are the outgoing edges of X
- Incoming edges of a vertex
- e, g, and i are incoming edges of X
- In-degree of a vertex
- X has in-degree 3
- Out-degree of a vertex
- X has out-degree 2

TERMINOLOGY

- Path
- Sequence of alternating vertices and edges
- Begins with a vertex
- Ends with a vertex
- Each edge is preceded and followed by its endpoints
- Simple path
- Path such that all its vertices and edges are distinct
- Examples
- $P_{1}=\{V, b, X, h, Z\}$ is a simple path
- $P_{2}=\{U, c, W, e, X, g, Y, f, W, d, V\}$ is a path that is not simple

TERMINOLOGY

- Cycle
- Circular sequence of alternating vertices and edges
- Each edge is preceded and followed by its endpoints
- Simple cycle
- Cycle such that all its vertices and edges are distinct
- Examples
- $C_{1}=\{V, b, X, g, Y, f, W, c, U, a, V\}$ is a simple cycle
- $C_{2}=\{U, c, W, e, X, g, Y, f, W, d, V, a, U\}$ is a cycle that is not simple

EXERCISE ON TERMINOLOGY

1. Number of vertices?
2. Number of edges?
3. What type of the graph is it?
4. Show the end vertices of the edge with largest weight
5. Show the vertices of smallest degree and largest degree
6. Show the edges incident to the vertices in the above question
7. Identify the shortest simple path from HNL to PVD
8. Identify the simple cycle with the most edges

EXERCISE PROPERTIES OF UNDIRECTED GRAPHS

- Property 1 - Total degree
$\Sigma_{v} \operatorname{deg}(v)=$?
- Property 2 - Total number of edges
- In an undirected graph with no selfloops and no multiple edges
$m \leq$ Upper Bound?
Lower Bound? $\leq m$
- Notation
- n
- m
- $\operatorname{deg}(v)$
number of vertices
number of edges
degree of vertex v

Example

- $n=$?
- $m=$?
- $\operatorname{deg}(v)=$?

A graph with given number of vertices (4) and maximum number of edges

EXERCISE
 PROPERTIES OF UNDIRECTED GRAPHS

- Property 1 - Total degree

$$
\Sigma_{v} \operatorname{deg}(v)=2 m
$$

- Property 2 - Total number of edges
- In an undirected graph with no self-loops and no multiple edges

$$
\begin{aligned}
& m \leq \frac{n(n-1)}{2} \\
& 0 \leq m
\end{aligned}
$$

Proof: Each vertex can have degree at most $(n-1)$

A graph with given number of vertices (4) and maximum number of edges

EXERCISE
 PROPERTIES OF DIRECTED GRAPHS

- Property 1 - Total in-degree and outdegree

$$
\begin{aligned}
& \Sigma_{v} \text { in }-\operatorname{deg}(v)=? \\
& \Sigma_{v} \text { out }-\operatorname{deg}(v)=?
\end{aligned}
$$

- Notation
- n number of vertices
- m number of edges
- $\operatorname{deg}(v)$ degree of vertex v
- Property 2 - Total number of edges
- In an directed graph with no self-loops and no multiple edges $m \leq$ UpperBound?
LowerBound? $\leq m$

Example

- $n=$?
- $m=$?
- $\operatorname{deg}(v)=?$

A graph with given number of vertices (4) and maximum number of edges

EXERCISE
 PROPERTIES OF DIRECTED GRAPHS

- Property 1 - Total in-degree and outdegree

$$
\begin{aligned}
& \Sigma_{v} i n-\operatorname{deg}(v)=m \\
& \Sigma_{v} \text { out }-\operatorname{deg}(v)=m
\end{aligned}
$$

- Notation
- n number of vertices
- m number of edges
- $\operatorname{deg}(v)$ degree of vertex v
- Property 2 - Total number of edges
- In an directed graph with no self-loops and no multiple edges

$$
\begin{aligned}
& m \leq n(n-1) \\
& 0 \leq m
\end{aligned}
$$

Example

- $n=4$
- $m=12$
- $\operatorname{deg}(v)=6$

A graph with given number of vertices (4) and maximum number of edges

SUBGRAPHS

- A subgraph S of a graph G is a graph such that
- The vertices of S are a subset of the vertices of G
- The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G

Subgraph

Spanning subgraph

CONNECTIVITY

- A graph is connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G

Connected graph

Non connected graph with two connected components

TREES AND FORESTS

- A (free) tree is an undirected graph T such that
- T is connected
- T has no cycles
- This definition of tree is different from the one of a rooted tree
- A forest is an undirected graph without cycles
- The connected components of a forest are trees

Tree

Forest

SPANNING TREES AND FORESTS

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest

Graph

Spanning tree

GRAPH ADT

- Vertices and edges are positions and store elements
- Vertex ADT
- operator * ()
- incidentEdges()
- isAdjacentTo(v)
- Edge ADT
- operator * ()
- endVertices()
- opposite(v)
- isAdjacentTo(f)
- isIncidentOn(v)
- isDirected()
- origin()
- dest()
- Graph ADT
- vertices()
- edges()
- insertVertex (x)
- insertEdge (v, w, x)
- insertDirectedEdge ($v, w, x)$
- eraseVertex (v)
- eraseEdge(e)
- Many more generic/accessor methods
- Lists of entities provide iterators

EXERCISE ON ADT

1. ord. incidentEdges()
2. ord.adjacentVertices()
3. ord. degree()
4. (lga,mia). endVertices()
5. insertVertex(iah)
6. insertEdge(mia, pvd, 1200)
7. eraseVertex(ord)
8. eraseEdge($d f w$, ord)
9. (dfw, lga). isDirected()
10. (dfw, lga). origin()
11. (dfw, lga). opposite(dfw)
12. (dfw, lga).dest()
13. $d f w$.isAdjacentTo(sfo)

EDGE LIST STRUCTURE

Edge List Vertex Sequence

EXERCISE
EDGE LIST STRUCTURE

- Construct the edge list for the following graph

ASYMPTOTIC PERFORMANCE EDGE LIST STRUCTURE

- n vertices, m edges - No parallel edges - No self-loops	Edge List
Space	?
endVertices (), opposite (), isIncidentOn (v)	$?$
v. incidentEdges (), v. isAdjacentTo (w)	$?$
insertVertex (x), insertEdge (u, v, w), eraseEdge (e)	$?$
$\operatorname{eraseVertex}(v)$	

ASYMPTOTIC PERFORMANCE EDGE LIST STRUCTURE

| - n vertices, m edges |
| :--- | :---: |
| - No parallel edges |
| - No self-loops |\quad Edge List

EDGE LIST STRUCTURE

- Vertex object
- element
- reference to position in vertex sequence
- Edge object
- element
- origin vertex object
- destination vertex object
- reference to position in edge sequence
- Vertex sequence
- sequence of vertex objects
- Edge sequence

ADJACENCY LIST STRUCTURE

Adjacency List

- Adjacency Lists associate edges with their end vertices
- Each vertex stores a list of incident

PVD $-(P V D$, ORD $)-(P V D, L G A)$ edges
DFW- (DFW, ORD) $-($ DFW, LGA $)-($ DFW, MIA $)$
MIA (MIA, LGA) (MIA, DFW)

EXERCISE
ADJACENCY LIST STRUCTURE

- Construct the adjacency list for the following graph

ASYMPTOTIC PERFORMANCE ADJACENCY LIST STRUCTURE

- n vertices, m edges - No parallel edges - No self-loops	Adjacency List	$\begin{gathered} \text { Adjacency List } \\ \text { ORD-(ORD, PVD)-(ORD, DFW) } \end{gathered}$
Space	?	LGA (LGA, PVD)-(LGA, MIA) (LGA, DFW)
$\begin{aligned} & \text { endVertices(), opposite(), } \\ & \text { isIncidentOn }(v) \end{aligned}$?	PVD-(PVD, ORD) (PVD, LGA) DFW-(DFW, ORD) (DFW, LGA) (DFW, MIA)
$\begin{aligned} & v . \text { incidentEdges }(), \\ & v . \text { isAdjacentTo }(w) \end{aligned}$?	MIA (MIA, LGA) (MIA, DFW)
```insertVertex(x), insertEdge(u,v,w), eraseEdge(e)```	?	
eraseVertex( $v$ )	?	

## ASYMPTOTIC PERFORMANCE ADJACENCY LIST STRUCTURE

- $n$ vertices, $m$ edges   - No parallel edges   - No self-loops	Adjacency List	$\begin{gathered} \text { Adjacency List } \\ \text { ORD-(ORD, PVD) ORD, DFW) } \end{gathered}$
Space	$O(n+m)$	LGA (LGA, PVD) (LGA, MIA) (LGA, DFW)
$\begin{aligned} & \text { endVertices(), opposite(), } \\ & \text { isIncidentOn }(v) \end{aligned}$	$O(1)$	PVD-(PVD, ORD) (PVD, LGA) DFW-(DFW, ORD) (DFW, LGA) -(DFW, MIA)
$v$. incidentEdges $($,   $v$. isAdjacentTo $(w)$	$\begin{aligned} & O(\operatorname{deg}(v)) \\ & O(\min (\operatorname{deg}(v), \operatorname{deg}(w))) \end{aligned}$	MIA (MIA, LGA)- MIA, DFW)
```insertVertex ( }x\mathrm{ ), insertEdge(u,v,w), eraseEdge(e)```	$O(1)$	
eraseVertex(v)	$O(\operatorname{deg}(v))$	

ADJACENCY LIST STRUCTURE

- Store vertex sequence and edge sequence

- Each vertex stores a sequence of incident edges
- Sequence of references to edge objects of incident edges
- Augmented edge objects
- References to associated positions in incidence sequences of end vertices

ADJACENCY MATRIX STRUCTURE

0	1	2	3	4	
0	0	0	1	1	0
2	0	0	1	1	1
1	1	0	0	0	
4	1	1	0	0	1
4	0	1	0	1	0

- Adjacency matrices store edges in a table, indexed by the vertex

EXERCISE
 ADJACENCY MATRIX STRUCTURE

- Construct the adjacency matrix for the following graph

ADJACENCY MATRIX STRUCTURE IN A WEIGHTED GRAPH

$\begin{gathered} 0 \\ \text { ORD } \end{gathered}$	0	0	849	802	0
$\begin{gathered} 1 \\ \text { LGA } \end{gathered}$	0	0	142	1387	1099
$\begin{gathered} 2 \\ \text { PVD } \end{gathered}$	849	142	0	0	0
$\begin{gathered} 3 \\ \text { DFW } \end{gathered}$	802	138	0	0	1120
$\begin{gathered} 4 \\ 0 ~ M I A \end{gathered}$	0	1099	0	1120	0

- Store edge object/property in table, or include a pointer to it inside of the table

EXERCISE
 ADJACENCY MATRIX STRUCTURE: WEIGHTED DIGRAPH

	$\begin{gathered} 0 \\ \text { ORD } \end{gathered}$	$\begin{gathered} 1 \\ \text { LGA } \end{gathered}$	$\begin{gathered} 2 \\ \text { PVD } \end{gathered}$	$\begin{gathered} 3 \\ \text { DFW } \end{gathered}$	$\begin{gathered} 4 \\ \text { MIA } \end{gathered}$
$\begin{gathered} 0 \\ \text { ORD } \end{gathered}$					
$\begin{gathered} 1 \\ \text { LGA } \end{gathered}$					
$\begin{gathered} 2 \\ \text { PVD } \end{gathered}$					
$\begin{gathered} 3 \\ \text { DFW } \end{gathered}$					
$\begin{gathered} 4 \\ \mathrm{O} \text { MIA } \end{gathered}$					

EXERCISE
 ADJACENCY MATRIX STRUCTURE: WEIGHTED DIGRAPH

	$\begin{gathered} 0 \\ \text { ORD } \end{gathered}$	$\begin{gathered} 1 \\ \text { LGA } \end{gathered}$	$\begin{gathered} 2 \\ \text { PVD } \end{gathered}$	$\begin{gathered} 3 \\ \text { DFW } \end{gathered}$	$\begin{gathered} 4 \\ \text { MIA } \end{gathered}$
$\begin{gathered} 0 \\ \text { ORD } \end{gathered}$	0	0	849	0	0
$\begin{gathered} 1 \\ \text { LGA } \end{gathered}$	0	0	0	1387	1099
$\begin{gathered} 2 \\ \text { PVD } \end{gathered}$	0	142	0	0	0
$\begin{gathered} 3 \\ \text { DFW } \end{gathered}$	802	0	0	0	0
$\begin{gathered} 4 \\ \rho \\ \text { MIA } \end{gathered}$	0	0	0	1120	0

ASYMPTOTIC PERFORMANCE OF ADJACENCY MATRIX STRUCTURE

- n vertices, m edges - No parallel edges - No self-loops	Adjacency Matrix
Space	$?$
endVertices (), opposite (), isIncidentOn (v), $v . \operatorname{isAdjacentTo~}(w)$	$?$
$v . \operatorname{incidentEdges}()$	$?$
insertEdge (u, v, w), eraseEdge (e)	$?$
insertVertex (x), eraseVertex (v)	$?$

	$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$				
0	0	0	1	1	0
1	0	0	1	1	1
2	1	1	0	0	0
3	1	1	0	0	1
4	0	1	0	1	0

ASYMPTOTIC PERFORMANCE OF ADJACENCY MATRIX STRUCTURE

- n vertices, m edges - No parallel edges - No self-loops	Adjacency Matrix
Space	$O\left(n^{2}\right)$
endVertices(O, opposite 0, isIncidentOn (v), v. isAdjacentTo (w)	$O(1)$
$v . \operatorname{incidentEdges}()$	$O(n)$
insertEdge (u, v, w), eraseEdge (e)	$O(1)$
insertVertex (x), eraseVertex (v)	$O\left(n^{2}\right)$

	$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$				
0	0	0	1	1	0
1	0	0	1	1	1
2	1	1	0	0	0
3	1	1	0	0	1
4	0	1	0	1	0

ADJACENCY MATRIX STRUCTURE

- Augmented vertex objects
- Integer key (index) associated with vertex
- 2D-array adjacency array
- Reference to edge object for adjacent vertices
- Null for non nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge

ASYMPTOTIC PERFORMANCE

- n vertices, m edges - No parallel edges - No self-loops	Edge List	Adjacency List	Adjacency Matrix
Space	$O(n+m)$	$O(n+m)$	$O\left(n^{2}\right)$
endVertices (), opposite (), isIncidentOn (v)	$O(1)$	$O(1)$	$O(1)$
v. incidentEdges ()	$O(m)$	$O(\operatorname{deg}(v))$	$O(n)$
v. isAdjacentTo (w)	$O(m)$	$O(\min (\operatorname{deg}(v), \operatorname{deg}(w)))$	$O(1)$
insertEdge (u, v, w), eraseEdge (e)	$O(1)$	$O(1)$	$O(1)$
insertVertex (x)	$O(1)$	$O(1)$	$O\left(n^{2}\right)$
eraseVertex (v)	$O(m)$	$O(\operatorname{deg}(v))$	$O\left(n^{2}\right)$

DEPTH-FIRST SEARCH

- Depth-first search (DFS) is a general technique for traversing a graph
- A DFS traversal of a graph G
- Visits all the vertices and edges of G
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G
- DFS on a graph with n vertices and m edges takes $O(n+m)$ time
- DFS can be further extended to solve other graph problems
- Find and report a path between two given vertices
- Find a cycle in the graph
- Depth-first search is to graphs what Euler tour is to binary trees

EXAMPLE

EXAMPLE

EXAMPLE

DFS AND MAZE TRAVERSAL

- The DFS algorithm is similar to a classic strategy for exploring a maze
- We mark each intersection, corner and dead end (vertex) visited
- We mark each corridor (edge) traversed
- We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)

DFS ALGORITHM

- The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm DFS(G)

Input: Graph G

Output: Labeling of the edges of G as discovery edges
and back edges

1. for each $v \in G$. vertices() do
2. v.setLabel(UNEXPLORED)
3. for each $e \in G$. edges() do
4. e.setLabel(UNEXPLORED)
5. for each $v \in G$. vertices() do
6. if v.getLabel ()$=U N E X P L O R E D$
7. $\operatorname{DFS}(G, v)$

Algorithm $\operatorname{DFS}(G, v)$

Input: Graph G and a start vectex v
Output: Labeling of the edges of G in the
7. $\operatorname{DFS}(G, w)$
8. else
connected component of v as discovery edges and back edges

1. v. setLabel(VISITED)
2. for each $e \in v$. incidentEdges() do
3. if e.getLabel() = UNEXPLORED)
4. $\quad w \leftarrow e . \operatorname{opposite}(v)$
5. if w.getLabel() =UNEXPLORED
6. e.setLabel(DISCOVERY)
7. e.setLabel(BACK)

EXERCISE DFS ALGORITHM

- Perform DFS of the following graph, start from vertex A
- Assume adjacent edges are processed in alphabetical order
- Number vertices in the order they are visited
- Label edges as discovery or back edges

PROPERTIES OF DFS

- Property 1
- $\operatorname{DFS}(G, v)$ visits all the vertices and edges in the connected component of v
- Property 2
- The discovery edges labeled by $\operatorname{DFS}(G, v)$ form a spanning tree of the connected component of v

ANALYSIS OF DFS

- Setting/getting a vertex/edge label takes $O(1)$ time
- Each vertex is labeled twice
- once as UNEXPLORED
- once as VISITED
- Each edge is labeled twice
- once as UNEXPLORED

- once as DISCOVERY or BACK
- Function $\operatorname{DFS}(G, v)$ and the method incidentEdges() are called once for each vertex

ANALYSIS OF DFS

- DFS runs in $O(n+m)$ time provided the graph is represented by the adjacency list structure
- Recall that $\Sigma_{v} \operatorname{deg}(v)=2 m$

Algorithm DFS(G)

Input: Graph G
Output: Labeling of the edges of G as discovery edges
and back edges

1. for each $v \in G$. vertices() do $O(n)$
2. v. setLabel(UNEXPLORED)
3. for each $e \in G$. edges () do $O(m)$
4. e. setLabel(UNEXPLORED)
5. for each $v \in G$. vertices () do $O(n+m)$
6. if v.getLabel() = UNEXPLORED
7. $\operatorname{DFS}(G, v)$

Algorithm $\operatorname{DFS}(G, v)$

Input: Graph G and a start vectex v
Output: Labeling of the edges of G in the connected component of v as discovery edges and back edges

1. v. setLabel(VISITED)
2. for each $e \in v$. incidentEdges () do $O(\operatorname{deg}(v))$
3. if e.getLabel() = UNEXPLORED)
4. $\quad w \leftarrow e$. opposite (v)
5. if w.getLabel() =UNEXPLORED
6. e.setLabel(DISCOVERY)
7. $\operatorname{DFS}(G, w)$
8. else
9. e. $\operatorname{setLabel}(B A C K)$

APPLICATION PATH FINDING

- We can specialize the DFS algorithm to find a path between two given vertices u and z using the template method pattern
- We call $\operatorname{DFS}(G, u)$ with u as the start vertex
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex Z is encountered, we return the path as the contents of the stack

Algorithm pathDFS (G, v, z)

1. v. setLabel(VISITED)
2. $S . \operatorname{push}(v)$
3. if $v=z$
4. return S. elements()
5. for each $e \in v$. incidentEdges() do
6. if e.getLabel() = UNEXPLORED)
7. $w \leftarrow e . \operatorname{opposite}(v)$
8. if w.getLabel() = UNEXPLORED
9. e.setLabel(DISCOVERY)
10. S. push(e)
11. pathDFS (G, w)
12. S. pop()
13. else
14. e. setLabel(BACK)
15. S. pop()

APPLICATION CYCLE FINDING

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex w

Algorithm cycleDFS (G, v, z)

1. v. setLabel(VISITED)
2. $S . \operatorname{push}(v)$
3. for each $e \in v$. incidentEdges() do
4. if e.getLabel() = UNEXPLORED)
5. $\quad w \leftarrow e$.opposite(v)
6. S. push (e)
7. if w.getLabel() = UNEXPLORED
8. e.setLabel(DISCOVERY)
9. cycleDFS(G,w)
10. S. pop()
11. else
12. $T \leftarrow$ empty stack
13. repeat
14. \quad. $\operatorname{push}(S . \operatorname{top}())$
15. S. pop()
16. until T. top() $=w$
17. rełurn T. elements()
18. S. pop()
(

-

BREADTH-FIRST SEARCH

- Breadth-first search (BFS) is a general technique for traversing a graph
- A BFS traversal of a graph G
- Visits all the vertices and edges of G
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G
- BFS on a graph with n vertices and m edges takes $O(n+m)$ time
- BFS can be further extended to solve other graph problems
- Find and report a path with the minimum number of edges between two given vertices
- Find a simple cycle, if there is one

EXAMPLE

---- cross edge

EXAMPLE

EXAMPLE

BFS ALGORITHM

- The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm BFS(G)
Input: Graph G
Output: Labeling of the edges and partition of the vertices of G

1. for each $v \in G$. vertices() do
2. v.setLabel(UNEXPLORED)
3. for each $e \in G$. edges() do
4. e.setLabel(UNEXPLORED)
5. for each $v \in G$. vertices() do
6. if v.getLabel ()$=U N E X P L O R E D$
7. $\operatorname{BFS}(G, v)$

Algorithm $\operatorname{BFS}(G, s)$

1. $L_{0} \leftarrow\{s\}$
2. s.setLabel(VISITED)
3. $i \leftarrow 0$
4. while $\neg L_{i}$. empty () do
5. $L_{i+1} \leftarrow \emptyset$
6. for each $v \in L_{i}$ do
7. for each $e \in v$. incidentEdges() do
8. if e.getLabel() = UNEXPLORED
9. $w \leftarrow e . \operatorname{opposite}(v)$
10. if w.getLabel() = UNEXPLORED
11. e.setLabel(DISCOVERY)
12. w.setLabel(VISITED)
13. $L_{i+1} \leftarrow L_{i+1} \cup\{w\}$
14. else
15. e.setLabel(CROSS)
16. $i \leftarrow i+1$

16. $i \leftarrow i+1$

EXERCISE BFS ALGORITHM

- Perform BFS of the following graph, start from vertex A
- Assume adjacent edges are processed in alphabetical order
- Number vertices in the order they are visited and note the level they are in
- Label edges as discovery or cross edges

PROPERTIES

- Notation
- G_{S} : connected component of S
- Property 1
- $\operatorname{BFS}(G, s)$ visits all the vertices and edges of G_{s}
- Property 2
- The discovery edges labeled by $\operatorname{BFS}(G, s)$ form a spanning tree T_{S} of G_{S}
- Property 3
- For each vertex $v \in L_{i}$
- The path of T_{s} from s to v has i edges
- Every path from s to v in G_{s} has at least i edges

ANALYSIS

- Setting/getting a vertex/edge label takes $O(1)$ time
- Each vertex is labeled twice
- once as UNEXPLORED
- once as VISITED
- Each edge is labeled twice
- once as UNEXPLORED
- once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence L_{i}
- Method incidentEdges() is called once for each vertex
- BFS runs in $O(n+m)$ time provided the graph is represented by the adjacency list structure
- Recall that $\Sigma_{v} \operatorname{deg}(v)=2 m$

Algorithm $\operatorname{BFS}(G, s)$

1. $L_{0} \leftarrow\{s\}$
2. s.setLabel(VISITED)
3. $i \leftarrow 0$
4. while $\neg L_{i}$. empty () do
5. $L_{i+1} \leftarrow \emptyset$
6. for each $v \in L_{i}$ do
7. for each $e \in v$. incidentEdges() do
8. if e.getLabel() = UNEXPLORED
9. $w \leftarrow e . \operatorname{opposite}(v)$
10. if w.getLabel() = UNEXPLORED
11. e.setLabel(DISCOVERY)
12. w.setLabel(VISITED)
13. $L_{i+1} \leftarrow L_{i+1} \cup\{w\}$
14. else
15. e.setLabel(CROSS)
16. $i \leftarrow i+1$

ANALYSIS OF BFS

- The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm BFS(G)

Input: Graph G
Output: Labeling of the edges and partition of the vertices of G

1. for each $v \in G$. vertices() do $O(n)$
2. v.setLabel(UNEXPLORED)
3. for each $e \in G$.edges() do $O(m)$
4. e.setLabel(UNEXPLORED)
5. for each $v \in G$. vertices() do $O(n+m)$
6. if v.getLabel ()$=$ UNEXPLORED
7. $\operatorname{BFS}(G, v)$

APPLICATIONS

- Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in $O(n+m)$ time
- Compute the connected components of G
- Compute a spanning forest of G
- Find a simple cycle in G, or report that G is a forest
- Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

DFS VS. BFS

DFS VS. BFS

Back edge (v, w)

- w is an ancestor of v in the tree of discovery edges

Cross edge (v, w)

- w is in the same level as v or in the next level in the tree of discovery edges

