
CHAPTER 13
GRAPH ALGORITHMS

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND

MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO

ORD

DFW

SFO

LAX

GRAPH

• A graph is a pair 𝐺 = (𝑉, 𝐸), where

• 𝑉 is a set of nodes, called vertices

• 𝐸 is a collection of pairs of vertices, called edges

• Vertices and edges can store arbitrary elements

• Example:

• A vertex represents an airport and stores the three-letter airport code

• An edge represents a flight route between two airports and stores the mileage of the route

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

EDGE & GRAPH TYPES

• Edge Types
• Directed edge

• ordered pair of vertices (𝑢, 𝑣)
• first vertex 𝑢 is the origin/source

• second vertex 𝑣 is the destination/target

• e.g., a flight

• Undirected edge
• unordered pair of vertices (𝑢, 𝑣)
• e.g., a flight route

• Weighted edge

• Graph Types
• Directed graph (Digraph)

• all the edges are directed

• e.g., route network

• Undirected graph
• all the edges are undirected

• e.g., flight network

• Weighted graph
• all the edges are weighted

ORD DFW
flight
AA 1206

ORD DFW

𝑢 𝑣

(𝑢, 𝑣)

flight
route

802 miles

802 miles

APPLICATIONS

• Electronic circuits

• Printed circuit board

• Integrated circuit

• Transportation networks

• Highway network

• Flight network

• Computer networks

• Local area network

• Internet

• Web

• Databases

• Entity-relationship diagram

TERMINOLOGY

• End points (or end vertices) of an edge

• 𝑈 and 𝑉 are the endpoints of 𝑎

• Edges incident on a vertex

• 𝑎, 𝑑, and 𝑏 are incident on 𝑉

• Adjacent vertices

• 𝑈 and 𝑉 are adjacent

• Degree of a vertex

• 𝑋 has degree 5

• Parallel (multiple) edges

• ℎ and 𝑖 are parallel edges

• Self-loop

• 𝑗 is a self-loop

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

TERMINOLOGY

• Outgoing edges of a vertex

• ℎ and 𝑏 are the outgoing edges of 𝑋

• Incoming edges of a vertex

• e, g, and 𝑖 are incoming edges of 𝑋

• In-degree of a vertex

• 𝑋 has in-degree 3

• Out-degree of a vertex

• 𝑋 has out-degree 2

X

V

W

Z

Y

b

e

d

f

g

h

i

j

TERMINOLOGY

• Path

• Sequence of alternating vertices and edges

• Begins with a vertex

• Ends with a vertex

• Each edge is preceded and followed by its endpoints

• Simple path

• Path such that all its vertices and edges are distinct

• Examples

• 𝑃1 = 𝑉, 𝑏, 𝑋, ℎ, 𝑍 is a simple path

• 𝑃2 = 𝑈, 𝑐,𝑊, 𝑒, 𝑋, 𝑔, 𝑌, 𝑓,𝑊, 𝑑, 𝑉 is a path that is not

simple

P1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2

TERMINOLOGY

• Cycle

• Circular sequence of alternating vertices and edges

• Each edge is preceded and followed by its endpoints

• Simple cycle

• Cycle such that all its vertices and edges are distinct

• Examples

• 𝐶1 = 𝑉, 𝑏, 𝑋, 𝑔, 𝑌, 𝑓,𝑊, 𝑐, 𝑈, 𝑎, 𝑉 is a simple cycle

• 𝐶2 = 𝑈, 𝑐,𝑊, 𝑒, 𝑋, 𝑔, 𝑌, 𝑓,𝑊, 𝑑, 𝑉, 𝑎, 𝑈 is a cycle that

is not simple

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2

EXERCISE ON TERMINOLOGY
1. Number of vertices?

2. Number of edges?

3. What type of the graph is it?

4. Show the end vertices of the edge with largest weight

5. Show the vertices of smallest degree and largest degree

6. Show the edges incident to the vertices in the above question

7. Identify the shortest simple path from HNL to PVD

8. Identify the simple cycle with the most edges

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

EXERCISE
PROPERTIES OF UNDIRECTED GRAPHS

• Property 1 – Total degree

Σ𝑣𝑑𝑒𝑔 𝑣 =?

• Property 2 – Total number of edges

• In an undirected graph with no self-

loops and no multiple edges

𝑚 ≤ 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑?

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑?≤ 𝑚

• Notation

• 𝑛 number of vertices

• 𝑚 number of edges

• deg(𝑣) degree of vertex v

A graph with given number of
vertices (4) and maximum
number of edges

Example

 𝑛 =?

 𝑚 =?

 deg 𝑣 =?

EXERCISE
PROPERTIES OF UNDIRECTED GRAPHS

• Property 1 – Total degree

Σ𝑣𝑑𝑒𝑔 𝑣 = 2𝑚

• Property 2 – Total number of edges

• In an undirected graph with no self-loops and

no multiple edges

𝑚 ≤
𝑛(𝑛 − 1)

2
0 ≤ 𝑚

Proof: Each vertex can have degree at most

𝑛 − 1

• Notation

• 𝑛 number of vertices

• 𝑚 number of edges

• deg(𝑣) degree of vertex v

Example

 𝑛 = 4

 𝑚 = 6

 deg 𝑣 = 3

A graph with given number of
vertices (4) and maximum
number of edges

EXERCISE
PROPERTIES OF DIRECTED GRAPHS

• Property 1 – Total in-degree and out-

degree

Σ𝑣𝑖𝑛 − deg(𝑣) =?

Σ𝑣𝑜𝑢𝑡 − deg 𝑣 =?

• Property 2 – Total number of edges

• In an directed graph with no self-loops

and no multiple edges

𝑚 ≤ 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑?

𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑?≤ 𝑚

• Notation

• 𝑛 number of vertices

• 𝑚 number of edges

• deg(𝑣) degree of vertex v

Example

 𝑛 =?

 𝑚 =?

 deg 𝑣 =?

A graph with given number of
vertices (4) and maximum
number of edges

EXERCISE
PROPERTIES OF DIRECTED GRAPHS

• Property 1 – Total in-degree and out-

degree

Σ𝑣𝑖𝑛 − deg(𝑣) = 𝑚

Σ𝑣𝑜𝑢𝑡 − deg 𝑣 = 𝑚

• Property 2 – Total number of edges

• In an directed graph with no self-loops

and no multiple edges

𝑚 ≤ 𝑛 𝑛 − 1

0 ≤ 𝑚

• Notation

• 𝑛 number of vertices

• 𝑚 number of edges

• deg(𝑣) degree of vertex v

Example

 𝑛 = 4

 𝑚 = 12

 deg 𝑣 = 6

A graph with given number of
vertices (4) and maximum
number of edges

SUBGRAPHS

• A subgraph 𝑆 of a graph 𝐺 is a graph

such that

• The vertices of 𝑆 are a subset of the

vertices of 𝐺

• The edges of 𝑆 are a subset of the edges

of 𝐺

• A spanning subgraph of 𝐺 is a

subgraph that contains all the vertices

of 𝐺

Subgraph

Spanning subgraph

CONNECTIVITY

• A graph is connected if there is a

path between every pair of vertices

• A connected component of a graph

𝐺 is a maximal connected subgraph

of 𝐺

Connected graph

Non connected graph with two
connected components

TREES AND FORESTS

• A (free) tree is an undirected graph 𝑇 such

that

• 𝑇 is connected

• 𝑇 has no cycles

• This definition of tree is different from the one

of a rooted tree

• A forest is an undirected graph without

cycles

• The connected components of a forest are

trees

Tree

Forest

SPANNING TREES AND FORESTS

• A spanning tree of a connected graph

is a spanning subgraph that is a tree

• A spanning tree is not unique unless the

graph is a tree

• Spanning trees have applications to the

design of communication networks

• A spanning forest of a graph is a

spanning subgraph that is a forest

Graph

Spanning tree

GRAPH ADT

• Vertices and edges are positions and store elements

• Vertex ADT

• operator ∗

• incidentEdges

• isAdjacentTo(𝑣)

• Edge ADT

• operator ∗

• endVertices

• opposite(𝑣)

• isAdjacentTo(𝑓)

• isIncidentOn(𝑣)

• isDirected

• origin

• dest

• Graph ADT

• vertices

• edges

• insertVertex 𝑥

• insertEdge(𝑣, 𝑤, 𝑥)

• insertDirectedEdge(𝑣, 𝑤, 𝑥)

• eraseVertex 𝑣

• eraseEdge(𝑒)

• Many more generic/accessor methods

• Lists of entities provide iterators

EXERCISE ON ADT

1. 𝑜𝑟𝑑. incidentEdges()
2. 𝑜𝑟𝑑. adjacentVertices()
3. 𝑜𝑟𝑑. degree()
4. 𝑙𝑔𝑎,𝑚𝑖𝑎 . endVertices()

5. 𝑑𝑓𝑤, 𝑙𝑔𝑎 . opposite(𝑑𝑓𝑤)

6. 𝑑𝑓𝑤. isAdjacentTo(𝑠𝑓𝑜)

7. insertVertex(𝑖𝑎ℎ)
8. insertEdge(𝑚𝑖𝑎, 𝑝𝑣𝑑, 1200)

9. eraseVertex(𝑜𝑟𝑑)
10. eraseEdge(𝑑𝑓𝑤, 𝑜𝑟𝑑)

11. 𝑑𝑓𝑤, 𝑙𝑔𝑎 . isDirected()

12. 𝑑𝑓𝑤, 𝑙𝑔𝑎 . origin()

13. 𝑑𝑓𝑤, 𝑙𝑔𝑎 . dest()

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

EDGE LIST STRUCTURE

• An edge list can be stored in a

sequence, a vector, a list or a

dictionary such as a hash table

ORD
PVD

MIA
DFW

LGA

(ORD, PVD)

(ORD, DFW)

(LGA, PVD)

(LGA, MIA)

(DFW, LGA)

849

802

142

1099

1387

(DFW, MIA) 1120

Edge List

ORD

LGA

PVD

DFW

MIA

Vertex Sequence

EXERCISE
EDGE LIST STRUCTURE

• Construct the edge list for the following graph

u
x

y

v

z

a

ASYMPTOTIC PERFORMANCE
EDGE LIST STRUCTURE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Edge List

Space ?

endVertices(), opposite(),
isIncidentOn(𝑣)

?

𝑣. incidentEdges(),
𝑣. isAdjacentTo(𝑤)

?

insertVertex(𝑥),
insertEdge(𝑢, 𝑣, 𝑤),
eraseEdge(𝑒)

?

eraseVertex(𝑣) ?

(ORD, PVD)

(ORD, DFW)

(LGA, PVD)

(LGA, MIA)

(DFW, LGA)

849

802

142

1099

1387

(DFW, MIA) 1120

Edge List

ORD

LGA

PVD

DFW

MIA

Vertex Sequence

2

3

2

3

2

False

False

False

False

False

False

Weight Directed Degree

ASYMPTOTIC PERFORMANCE
EDGE LIST STRUCTURE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Edge List

Space 𝑂(𝑛 +𝑚)

endVertices(), opposite(),
isIncidentOn(𝑣)

𝑂(1)

𝑣. incidentEdges(),
𝑣. isAdjacentTo(𝑤)

𝑂(𝑚)

insertVertex(𝑥),
insertEdge(𝑢, 𝑣, 𝑤),
eraseEdge(𝑒)

𝑂(1)

eraseVertex(𝑣) 𝑂(𝑚)

(ORD, PVD)

(ORD, DFW)

(LGA, PVD)

(LGA, MIA)

(DFW, LGA)

849

802

142

1099

1387

(DFW, MIA) 1120

Edge List

ORD

LGA

PVD

DFW

MIA

Vertex Sequence

2

3

2

3

2

False

False

False

False

False

False

Weight Directed Degree

EDGE LIST STRUCTURE

• Vertex object

• element

• reference to position in vertex sequence

• Edge object

• element

• origin vertex object

• destination vertex object

• reference to position in edge sequence

• Vertex sequence

• sequence of vertex objects

• Edge sequence

• sequence of edge objects

v

u

w

a c

b

a

z
d

u v w z

b c d

ADJACENCY LIST STRUCTURE

• Adjacency Lists associate edges with

their end vertices

• Each vertex stores a list of incident

edges

ORD PVD

MIA
DFW

LGA

ORD

LGA

PVD

DFW

MIA

(ORD, PVD)

Adjacency List

(ORD, DFW)

(LGA, PVD) (LGA, MIA)

(PVD, ORD) (PVD, LGA)

(LGA, DFW)

(DFW, ORD) (DFW, LGA) (DFW, MIA)

(MIA, LGA) (MIA, DFW)

EXERCISE
ADJACENCY LIST STRUCTURE

• Construct the adjacency list for the following graph

u
x

y

v

z

a

ASYMPTOTIC PERFORMANCE
ADJACENCY LIST STRUCTURE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Adjacency List

Space ?

endVertices(), opposite(),
isIncidentOn(𝑣)

?

𝑣. incidentEdges(),
𝑣. isAdjacentTo(𝑤)

?

insertVertex(𝑥),
insertEdge(𝑢, 𝑣, 𝑤),
eraseEdge(𝑒)

?

eraseVertex(𝑣) ?

ORD

LGA

PVD

DFW

MIA

(ORD, PVD)

Adjacency List

(ORD, DFW)

(LGA, PVD) (LGA, MIA)

(PVD, ORD) (PVD, LGA)

(LGA, DFW)

(DFW, ORD) (DFW, LGA) (DFW, MIA)

(MIA, LGA) (MIA, DFW)

ASYMPTOTIC PERFORMANCE
ADJACENCY LIST STRUCTURE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Adjacency List

Space 𝑂(𝑛 +𝑚)

endVertices(), opposite(),
isIncidentOn(𝑣)

𝑂(1)

𝑣. incidentEdges(),
𝑣. isAdjacentTo(𝑤)

𝑂 deg 𝑣
𝑂 min deg 𝑣 , deg 𝑤

insertVertex(𝑥),
insertEdge(𝑢, 𝑣, 𝑤),
eraseEdge(𝑒)

𝑂(1)

eraseVertex(𝑣) 𝑂 deg 𝑣

ORD

LGA

PVD

DFW

MIA

(ORD, PVD)

Adjacency List

(ORD, DFW)

(LGA, PVD) (LGA, MIA)

(PVD, ORD) (PVD, LGA)

(LGA, DFW)

(DFW, ORD) (DFW, LGA) (DFW, MIA)

(MIA, LGA) (MIA, DFW)

ADJACENCY LIST STRUCTURE

• Store vertex sequence and edge sequence

• Each vertex stores a sequence of incident
edges

• Sequence of references to edge objects of
incident edges

• Augmented edge objects

• References to associated positions in
incidence sequences of end vertices

u

v

w

a b

a

u v w

b

ADJACENCY MATRIX STRUCTURE

0 1 2 3 4

0 0 0 1 1 0

1 0 0 1 1 1

2 1 1 0 0 0

3 1 1 0 0 1

4 0 1 0 1 0

• Adjacency matrices store edges in a

table, indexed by the vertex

0 2

4
3

1

EXERCISE
ADJACENCY MATRIX STRUCTURE

• Construct the adjacency matrix for the following graph

u
x

y

v

z

a

ADJACENCY MATRIX STRUCTURE IN A
WEIGHTED GRAPH

0
ORD

1
LGA

2
PVD

3
DFW

4
MIA

0
ORD 0 0 849 802 0

1
LGA 0 0 142 1387 1099

2
PVD

849 142 0 0 0

3
DFW 802 138 0 0 1120

4
MIA 0 1099 0 1120 0

• Store edge object/property in

table, or include a pointer to it

inside of the table

0:ORD 2:PVD

4:MIA
3:DFW

1:LGA

EXERCISE
ADJACENCY MATRIX STRUCTURE: WEIGHTED DIGRAPH

0
ORD

1
LGA

2
PVD

3
DFW

4
MIA

0
ORD

1
LGA

2
PVD

3
DFW

4
MIA

0:ORD 2:PVD

4:MIA
3:DFW

1:LGA

EXERCISE
ADJACENCY MATRIX STRUCTURE: WEIGHTED DIGRAPH

0
ORD

1
LGA

2
PVD

3
DFW

4
MIA

0
ORD 0 0 849 0 0

1
LGA 0 0 0 1387 1099

2
PVD

0 142 0 0 0

3
DFW 802 0 0 0 0

4
MIA 0 0 0 1120 0

0:ORD 2:PVD

4:MIA
3:DFW

1:LGA

ASYMPTOTIC PERFORMANCE OF ADJACENCY
MATRIX STRUCTURE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Adjacency Matrix

Space ?

endVertices(), opposite(),
isIncidentOn(𝑣),
𝑣. isAdjacentTo 𝑤

?

𝑣. incidentEdges() ?

insertEdge(𝑢, 𝑣, 𝑤),
eraseEdge(𝑒)

?

insertVertex 𝑥 ,

eraseVertex(𝑣)
?

0 1 2 3 4

0 0 0 1 1 0

1 0 0 1 1 1

2 1 1 0 0 0

3 1 1 0 0 1

4 0 1 0 1 0

ASYMPTOTIC PERFORMANCE OF ADJACENCY
MATRIX STRUCTURE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Adjacency Matrix

Space 𝑂(𝑛2)

endVertices(), opposite(),
isIncidentOn(𝑣),
𝑣. isAdjacentTo 𝑤

𝑂(1)

𝑣. incidentEdges() 𝑂 𝑛

insertEdge(𝑢, 𝑣, 𝑤),
eraseEdge(𝑒)

𝑂(1)

insertVertex 𝑥 ,

eraseVertex(𝑣)
𝑂 𝑛2

0 1 2 3 4

0 0 0 1 1 0

1 0 0 1 1 1

2 1 1 0 0 0

3 1 1 0 0 1

4 0 1 0 1 0

ADJACENCY MATRIX STRUCTURE

• Augmented vertex objects

• Integer key (index) associated with vertex

• 2D-array adjacency array

• Reference to edge object for adjacent

vertices

• Null for non nonadjacent vertices

• The “old fashioned” version just has 0

for no edge and 1 for edge

u

v

w

a b

0 1 2

0  

1 

2  a

u v w0 1 2

b

ASYMPTOTIC PERFORMANCE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Edge
List

Adjacency
List

Adjacency
Matrix

Space 𝑂(𝑛 +𝑚) 𝑂(𝑛 + 𝑚) 𝑂 𝑛2

endVertices(), opposite(),
isIncidentOn(𝑣)

𝑂(1) 𝑂(1) 𝑂 1

𝑣. incidentEdges() 𝑂(𝑚) 𝑂 deg 𝑣 𝑂 𝑛

𝑣. isAdjacentTo(𝑤) 𝑂 𝑚 𝑂 min deg 𝑣 , deg 𝑤 𝑂 1

insertEdge(𝑢, 𝑣, 𝑤),
eraseEdge(𝑒)

𝑂(1) 𝑂(1) 𝑂 1

insertVertex(𝑥) 𝑂 1 𝑂 1 𝑂(𝑛2)

eraseVertex(𝑣) 𝑂(𝑚) 𝑂 deg 𝑣 𝑂 𝑛2

DEPTH-FIRST SEARCH
DB

A

C

E

DEPTH-FIRST SEARCH

• Depth-first search (DFS) is a general

technique for traversing a graph

• A DFS traversal of a graph 𝐺

• Visits all the vertices and edges of 𝐺

• Determines whether 𝐺 is connected

• Computes the connected components of 𝐺

• Computes a spanning forest of 𝐺

• DFS on a graph with n vertices and m

edges takes 𝑂(𝑛 +𝑚) time

• DFS can be further extended to solve

other graph problems

• Find and report a path between two

given vertices

• Find a cycle in the graph

• Depth-first search is to graphs what

Euler tour is to binary trees

EXAMPLE

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge

back edge

A visited vertex

A unexplored vertex

unexplored edge

𝐴(𝐴) = {𝑩, 𝐶, 𝐷, 𝐸}

𝐴(𝐵) = {𝑨, 𝐶, 𝐹}
𝐴(𝐵) = {𝐴, 𝑪, 𝐹}

𝐴(𝐶) = {𝑨, 𝐵, 𝐷, 𝐸}

F

F

FG

G

G

𝐴(𝐶) = {𝐴, 𝑩, 𝐷, 𝐸}
𝐴(𝐶) = {𝐴, 𝐵, 𝑫, 𝐸}

EXAMPLE

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

𝐴(𝐷) = {𝑨, 𝐶} 𝐴(𝐸) = {𝑨, 𝐶}

F F

F F

𝐴(𝐶) = {𝐴, 𝐵, 𝐷, 𝑬}𝐴(𝐶) = {𝐴, 𝐵,𝑫, 𝐸}

𝐴(𝐷) = {𝐴, 𝑪}
𝐴(𝐷) = {𝐴, 𝐶}

𝐴(𝐸) = {𝐴, 𝑪}
𝐴(𝐸) = {𝐴, 𝐶}

G

G

G

G

EXAMPLE

DB

A

C

E

F

𝐴(𝐶) = {𝐴, 𝐵, 𝐷, 𝐸}
𝐴(𝐵) = {𝐴, 𝐶, 𝑭}

G

DB

A

C

E

F G

𝐴(𝐺) = ∅

DB

A

C

E

F

𝐴(𝐹) = {𝐵}

𝐴(𝐵) = {𝐴, 𝐶, 𝐹}
𝐴(𝐴) = {𝐴, 𝐵, 𝐶, 𝐷}

G

DFS AND MAZE TRAVERSAL

• The DFS algorithm is similar to a classic

strategy for exploring a maze

• We mark each intersection, corner and

dead end (vertex) visited

• We mark each corridor (edge) traversed

• We keep track of the path back to the

entrance (start vertex) by means of a

rope (recursion stack)

DFS ALGORITHM

• The algorithm uses a mechanism for setting and

getting “labels” of vertices and edges

Algorithm DFS(𝐺)
Input: Graph 𝐺
Output: Labeling of the edges of 𝐺 as discovery

edges

and back edges

1. for each 𝑣 ∈ 𝐺. vertices do

2. 𝑣. setLabel 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
3. for each 𝑒 ∈ 𝐺. edges do

4. 𝑒. setLabel(𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
5. for each 𝑣 ∈ 𝐺. vertices do

6. if 𝑣. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
7. DFS(𝐺, 𝑣)

Algorithm DFS(𝐺, 𝑣)
Input: Graph 𝐺 and a start vectex 𝑣
Output: Labeling of the edges of 𝐺 in the

connected component of 𝑣 as discovery edges

and back edges

1. 𝑣. setLabel(𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
2. for each 𝑒 ∈ 𝑣. incidentEdges do

3. if 𝑒. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
4. 𝑤 ← 𝑒. opposite(𝑣)
5. if 𝑤. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
6. 𝑒. setLabel(𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
7. DFS(𝐺, 𝑤)
8. else

9. 𝑒. setLabel(𝐵𝐴𝐶𝐾)

EXERCISE
DFS ALGORITHM

• Perform DFS of the following graph, start from vertex A

• Assume adjacent edges are processed in alphabetical order

• Number vertices in the order they are visited

• Label edges as discovery or back edges

CB

A

E

D

F

PROPERTIES OF DFS

• Property 1

• DFS(𝐺, 𝑣) visits all the vertices and

edges in the connected component of 𝑣

• Property 2

• The discovery edges labeled by

DFS(𝐺, 𝑣) form a spanning tree of the

connected component of 𝑣

DB

A

C

E

F G

v1

v2

ANALYSIS OF DFS

• Setting/getting a vertex/edge label takes 𝑂(1) time

• Each vertex is labeled twice

• once as 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷

• once as 𝑉𝐼𝑆𝐼𝑇𝐸𝐷

• Each edge is labeled twice

• once as 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷

• once as 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 or 𝐵𝐴𝐶𝐾

• Function DFS(𝐺, 𝑣) and the method incidentEdges are called once for each vertex

DB

A

C

E

F G

ANALYSIS OF DFS

• DFS runs in 𝑂(𝑛 +𝑚) time provided the graph is

represented by the adjacency list structure

• Recall that Σ𝑣 deg 𝑣 = 2𝑚

Algorithm DFS(𝐺)
Input: Graph 𝐺
Output: Labeling of the edges of 𝐺 as discovery

edges

and back edges

1. for each 𝑣 ∈ 𝐺. vertices do 𝑂(𝑛)
2. 𝑣. setLabel 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
3. for each 𝑒 ∈ 𝐺. edges do 𝑂(𝑚)
4. 𝑒. setLabel(𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
5. for each 𝑣 ∈ 𝐺. vertices do 𝑂(𝑛 + 𝑚)
6. if 𝑣. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
7. DFS(𝐺, 𝑣)

Algorithm DFS(𝐺, 𝑣)
Input: Graph 𝐺 and a start vectex 𝑣
Output: Labeling of the edges of 𝐺 in the

connected component of 𝑣 as discovery edges

and back edges

1. 𝑣. setLabel(𝑉𝐼𝑆𝐼𝑇𝐸𝐷)

2. for each 𝑒 ∈ 𝑣. incidentEdges do 𝑂 𝑑𝑒𝑔 𝑣

3. if 𝑒. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
4. 𝑤 ← 𝑒. opposite(𝑣)
5. if 𝑤. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
6. 𝑒. setLabel(𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
7. DFS(𝐺, 𝑤)
8. else

9. 𝑒. setLabel(𝐵𝐴𝐶𝐾)

APPLICATION
PATH FINDING

• We can specialize the DFS algorithm to find a path

between two given vertices 𝑢 and 𝑧 using the

template method pattern

• We call DFS(𝐺, 𝑢) with 𝑢 as the start vertex

• We use a stack 𝑆 to keep track of the path

between the start vertex and the current vertex

• As soon as destination vertex 𝑧 is encountered, we

return the path as the contents of the stack

Algorithm pathDFS(𝐺, 𝑣, 𝑧)
1. 𝑣. setLabel(𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
2. 𝑆. push(𝑣)
3. if 𝑣 = 𝑧
4. return 𝑆. elements()
5. for each 𝑒 ∈ 𝑣. incidentEdges do

6. if 𝑒. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
7. 𝑤 ← 𝑒. opposite(𝑣)
8. if 𝑤. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
9. 𝑒. setLabel(𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
10. 𝑆. push(𝑒)
11. pathDFS 𝐺,𝑤
12. 𝑆. pop()
13. else

14. 𝑒. setLabel(𝐵𝐴𝐶𝐾)
15. 𝑆. pop()

APPLICATION
CYCLE FINDING

• We can specialize the DFS algorithm to find a

simple cycle using the template method pattern

• We use a stack 𝑆 to keep track of the path

between the start vertex and the current vertex

• As soon as a back edge 𝑣, 𝑤 is encountered, we

return the cycle as the portion of the stack from the

top to vertex 𝑤

Algorithm cycleDFS(𝐺, 𝑣, 𝑧)
1. 𝑣. setLabel(𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
2. 𝑆. push(𝑣)
3. for each 𝑒 ∈ 𝑣. incidentEdges do

4. if 𝑒. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
5. 𝑤 ← 𝑒. opposite(𝑣)
6. 𝑆. push 𝑒
7. if 𝑤. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
8. 𝑒. setLabel(𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
9. cycleDFS 𝐺,𝑤
10. 𝑆. pop()
11. else

12. 𝑇 ← empty stack

13. repeat

14. 𝑇. push 𝑆. top

15. 𝑆. pop
16. until 𝑇. top = 𝑤
17. return 𝑇. elements
18. 𝑆. pop()

BREADTH-FIRST SEARCH CB

A

E

D

L0

L1

F
L2

BREADTH-FIRST SEARCH

• Breadth-first search (BFS) is a general

technique for traversing a graph

• A BFS traversal of a graph 𝐺

• Visits all the vertices and edges of 𝐺

• Determines whether 𝐺 is connected

• Computes the connected components of 𝐺

• Computes a spanning forest of 𝐺

• BFS on a graph with n vertices and m

edges takes 𝑂(𝑛 +𝑚) time

• BFS can be further extended to solve

other graph problems

• Find and report a path with the minimum

number of edges between two given

vertices

• Find a simple cycle, if there is one

EXAMPLE

CB

A

E

D

discovery edge

cross edge

A visited vertex

A unexplored vertex

unexplored edge

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

EXAMPLE

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

discovery edge
cross edge

visited vertexA
A unexplored vertex

unexplored edge

EXAMPLE

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

discovery edge
cross edge

visited vertexA
A unexplored vertex

unexplored edge

BFS ALGORITHM

• The algorithm uses a mechanism for setting and getting
“labels” of vertices and edges

Algorithm BFS(𝐺)
Input: Graph 𝐺
Output: Labeling of the edges and partition of the

vertices of 𝐺
1. for each 𝑣 ∈ 𝐺. vertices do

2. 𝑣. setLabel(𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
3. for each 𝑒 ∈ 𝐺. edges() do

4. 𝑒. setLabel(𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
5. for each 𝑣 ∈ 𝐺. vertices() do

6. if 𝑣. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
7. BFS 𝐺, 𝑣

Algorithm BFS(𝐺, 𝑠)
1. 𝐿0 ← 𝑠
2. 𝑠. setLabel(𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
3. 𝑖 ← 0
4. while ¬𝐿𝑖 . empty() do

5. 𝐿𝑖+1 ← ∅
6. for each 𝑣 ∈ 𝐿𝑖 do

7. for each 𝑒 ∈ 𝑣. incidentEdges() do

8. if 𝑒. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
9. 𝑤 ← 𝑒. opposite 𝑣
10. if 𝑤. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
11. 𝑒. setLabel(𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
12. 𝑤. setLabel(𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
13. 𝐿𝑖+1 ← 𝐿𝑖+1 ∪ 𝑤
14. else

15. 𝑒. setLabel(𝐶𝑅𝑂𝑆𝑆)
16. 𝑖 ← 𝑖 + 1

EXERCISE
BFS ALGORITHM

• Perform BFS of the following graph, start from vertex A

• Assume adjacent edges are processed in alphabetical order

• Number vertices in the order they are visited and note the level they are in

• Label edges as discovery or cross edges

CB

A

E

D

F

PROPERTIES

• Notation

• 𝐺𝑠: connected component of 𝑠

• Property 1

• BFS(𝐺, 𝑠) visits all the vertices and edges of

𝐺𝑠

• Property 2

• The discovery edges labeled by BFS 𝐺, 𝑠
form a spanning tree 𝑇𝑠 of 𝐺𝑠

• Property 3

• For each vertex 𝑣 ∈ 𝐿𝑖
• The path of 𝑇𝑠 from 𝑠 to 𝑣 has 𝑖 edges

• Every path from 𝑠 to 𝑣 in 𝐺𝑠 has at least 𝑖
edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

ANALYSIS

• Setting/getting a vertex/edge label takes O(1) time

• Each vertex is labeled twice

• once as UNEXPLORED

• once as VISITED

• Each edge is labeled twice

• once as UNEXPLORED

• once as DISCOVERY or CROSS

• Each vertex is inserted once into a sequence 𝐿𝑖

• Method incidentEdges() is called once for each vertex

• BFS runs in 𝑂 𝑛 +𝑚 time provided the graph is represented by the adjacency list structure

• Recall that Σ𝑣 deg 𝑣 = 2𝑚

ANALYSIS OF BFS

• The algorithm uses a mechanism for setting and getting “labels”
of vertices and edges

Algorithm BFS(𝐺)

Input: Graph 𝐺

Output: Labeling of the edges and partition of the vertices of 𝐺

1. for each 𝑣 ∈ 𝐺. vertices do 𝑂(𝑛)

2. 𝑣. setLabel(𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)

3. for each 𝑒 ∈ 𝐺. edges() do 𝑂 𝑚

4. 𝑒. setLabel(𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)

5. for each 𝑣 ∈ 𝐺. vertices() do 𝑂 𝑛 +𝑚

6. if 𝑣. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷

7. BFS 𝐺, 𝑣

Algorithm BFS(𝐺, 𝑠)

1. 𝐿0 ← 𝑠

2. 𝑠. setLabel(𝑉𝐼𝑆𝐼𝑇𝐸𝐷)

3. 𝑖 ← 0

4. while ¬𝐿𝑖 . empty() do

5. 𝐿𝑖+1 ← ∅

6. for each 𝑣 ∈ 𝐿𝑖 do 𝑂 𝑑𝑒𝑔 𝑣

7. for each 𝑒 ∈ 𝑣. incidentEdges() do

8. if 𝑒. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷

9. 𝑤 ← 𝑒. opposite 𝑣

10. if 𝑤. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷

11. 𝑒. setLabel(𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)

12. 𝑤. setLabel(𝑉𝐼𝑆𝐼𝑇𝐸𝐷)

13. 𝐿𝑖+1 ← 𝐿𝑖+1 ∪ 𝑤

14. else

15. 𝑒. setLabel(𝐶𝑅𝑂𝑆𝑆)

16. 𝑖 ← 𝑖 + 1

APPLICATIONS

• Using the template method pattern, we can specialize the BFS traversal of a

graph 𝐺 to solve the following problems in 𝑂 𝑛 +𝑚 time

• Compute the connected components of 𝐺

• Compute a spanning forest of 𝐺

• Find a simple cycle in 𝐺, or report that 𝐺 is a forest

• Given two vertices of 𝐺, find a path in 𝐺 between them with the minimum number of

edges, or report that no such path exists

DFS VS. BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Applications DFS BFS

Spanning forest,
connected components, paths, cycles

 

Shortest paths 

Biconnected components 

DFS VS. BFS

Back edge 𝑣,𝑤

• 𝑤 is an ancestor of 𝑣 in the tree of

discovery edges

Cross edge 𝑣,𝑤
• 𝑤 is in the same level as 𝑣 or in the

next level in the tree of discovery
edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

