
CHAPTER 13
GRAPH ALGORITHMS
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GRAPH

• A graph is a pair 𝐺 = (𝑉, 𝐸), where

• 𝑉 is a set of nodes, called vertices

• 𝐸 is a collection of pairs of vertices, called edges

• Vertices and edges can store arbitrary elements

• Example:

• A vertex represents an airport and stores the three-letter airport code

• An edge represents a flight route between two airports and stores the mileage of the route
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EDGE & GRAPH TYPES

• Edge Types
• Directed edge

• ordered pair of vertices (𝑢, 𝑣)
• first vertex 𝑢 is the origin/source

• second vertex 𝑣 is the destination/target

• e.g., a flight

• Undirected edge
• unordered pair of vertices (𝑢, 𝑣)
• e.g., a flight route

• Weighted edge

• Graph Types
• Directed graph (Digraph)

• all the edges are directed

• e.g., route network

• Undirected graph
• all the edges are undirected

• e.g., flight network

• Weighted graph
• all the edges are weighted
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APPLICATIONS

• Electronic circuits

• Printed circuit board

• Integrated circuit

• Transportation networks

• Highway network

• Flight network

• Computer networks

• Local area network

• Internet

• Web

• Databases

• Entity-relationship diagram



TERMINOLOGY

• End points (or end vertices) of an edge

• 𝑈 and 𝑉 are the endpoints of 𝑎

• Edges incident on a vertex

• 𝑎, 𝑑, and 𝑏 are incident on 𝑉

• Adjacent vertices

• 𝑈 and 𝑉 are adjacent

• Degree of a vertex

• 𝑋 has degree 5 

• Parallel (multiple) edges

• ℎ and 𝑖 are parallel edges

• Self-loop

• 𝑗 is a self-loop
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TERMINOLOGY

• Outgoing edges of a vertex

• ℎ and 𝑏 are the outgoing edges of 𝑋

• Incoming edges of a vertex

• e, g, and 𝑖 are incoming edges of 𝑋

• In-degree of a vertex

• 𝑋 has in-degree 3 

• Out-degree of a vertex

• 𝑋 has out-degree 2
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TERMINOLOGY

• Path

• Sequence of alternating vertices and edges 

• Begins with a vertex

• Ends with a vertex

• Each edge is preceded and followed by its endpoints

• Simple path

• Path such that all its vertices and edges are distinct

• Examples

• 𝑃1 = 𝑉, 𝑏, 𝑋, ℎ, 𝑍 is a simple path

• 𝑃2 = 𝑈, 𝑐,𝑊, 𝑒, 𝑋, 𝑔, 𝑌, 𝑓,𝑊, 𝑑, 𝑉 is a path that is not 

simple
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TERMINOLOGY

• Cycle

• Circular sequence of alternating vertices and edges 

• Each edge is preceded and followed by its endpoints

• Simple cycle

• Cycle such that all its vertices and edges are distinct

• Examples

• 𝐶1 = 𝑉, 𝑏, 𝑋, 𝑔, 𝑌, 𝑓,𝑊, 𝑐, 𝑈, 𝑎, 𝑉 is a simple cycle

• 𝐶2 = 𝑈, 𝑐,𝑊, 𝑒, 𝑋, 𝑔, 𝑌, 𝑓,𝑊, 𝑑, 𝑉, 𝑎, 𝑈 is a cycle that 

is not simple
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EXERCISE ON TERMINOLOGY
1. Number of vertices?

2. Number of edges?

3. What type of the graph is it? 

4. Show the end vertices of the edge with largest weight

5. Show the vertices of smallest degree and largest degree

6. Show the edges incident to the vertices in the above question

7. Identify the shortest simple path from HNL to PVD

8. Identify the simple cycle with the most edges
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EXERCISE
PROPERTIES OF UNDIRECTED GRAPHS

• Property 1 – Total degree

Σ𝑣𝑑𝑒𝑔 𝑣 =?

• Property 2 – Total number of edges

• In an undirected graph with no self-

loops and no multiple edges

𝑚 ≤ 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑?

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑?≤ 𝑚

• Notation

• 𝑛 number of vertices

• 𝑚 number of edges

• deg(𝑣) degree of vertex v

A graph with given number of 
vertices (4) and maximum 
number of edges

Example

 𝑛 =?

 𝑚 =?

 deg 𝑣 =?



EXERCISE
PROPERTIES OF UNDIRECTED GRAPHS

• Property 1 – Total degree

Σ𝑣𝑑𝑒𝑔 𝑣 = 2𝑚

• Property 2 – Total number of edges

• In an undirected graph with no self-loops and 

no multiple edges

𝑚 ≤
𝑛(𝑛 − 1)

2
0 ≤ 𝑚

Proof: Each vertex can have degree at most 

𝑛 − 1

• Notation

• 𝑛 number of vertices

• 𝑚 number of edges

• deg(𝑣) degree of vertex v

Example

 𝑛 = 4

 𝑚 = 6

 deg 𝑣 = 3

A graph with given number of 
vertices (4) and maximum 
number of edges



EXERCISE
PROPERTIES OF DIRECTED GRAPHS

• Property 1 – Total in-degree and out-

degree

Σ𝑣𝑖𝑛 − deg(𝑣) =?

Σ𝑣𝑜𝑢𝑡 − deg 𝑣 =?

• Property 2 – Total number of edges

• In an directed graph with no self-loops 

and no multiple edges

𝑚 ≤ 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑?

𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑?≤ 𝑚

• Notation

• 𝑛 number of vertices

• 𝑚 number of edges

• deg(𝑣) degree of vertex v

Example

 𝑛 =?

 𝑚 =?

 deg 𝑣 =?

A graph with given number of 
vertices (4) and maximum 
number of edges



EXERCISE
PROPERTIES OF DIRECTED GRAPHS

• Property 1 – Total in-degree and out-

degree

Σ𝑣𝑖𝑛 − deg(𝑣) = 𝑚

Σ𝑣𝑜𝑢𝑡 − deg 𝑣 = 𝑚

• Property 2 – Total number of edges

• In an directed graph with no self-loops 

and no multiple edges

𝑚 ≤ 𝑛 𝑛 − 1

0 ≤ 𝑚

• Notation

• 𝑛 number of vertices

• 𝑚 number of edges

• deg(𝑣) degree of vertex v

Example

 𝑛 = 4

 𝑚 = 12

 deg 𝑣 = 6

A graph with given number of 
vertices (4) and maximum 
number of edges



SUBGRAPHS

• A subgraph 𝑆 of a graph 𝐺 is a graph 

such that 

• The vertices of 𝑆 are a subset of the 

vertices of 𝐺

• The edges of 𝑆 are a subset of the edges 

of 𝐺

• A spanning subgraph of 𝐺 is a 

subgraph that contains all the vertices 

of 𝐺

Subgraph

Spanning subgraph



CONNECTIVITY

• A graph is connected if there is a 

path between every pair of vertices

• A connected component of a graph 

𝐺 is a maximal connected subgraph 

of 𝐺

Connected graph

Non connected graph with two 
connected components



TREES AND FORESTS

• A (free) tree is an undirected graph 𝑇 such 

that

• 𝑇 is connected

• 𝑇 has no cycles

• This definition of tree is different from the one 

of a rooted tree

• A forest is an undirected graph without 

cycles

• The connected components of a forest are 

trees

Tree
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SPANNING TREES AND FORESTS

• A spanning tree of a connected graph 

is a spanning subgraph that is a tree

• A spanning tree is not unique unless the 

graph is a tree

• Spanning trees have applications to the 

design of communication networks

• A spanning forest of a graph is a 

spanning subgraph that is a forest

Graph

Spanning tree



GRAPH ADT

• Vertices and edges are positions and store elements

• Vertex ADT

• operator ∗

• incidentEdges

• isAdjacentTo(𝑣)

• Edge ADT

• operator ∗

• endVertices

• opposite(𝑣)

• isAdjacentTo(𝑓)

• isIncidentOn(𝑣)

• isDirected

• origin

• dest

• Graph ADT

• vertices

• edges

• insertVertex 𝑥

• insertEdge(𝑣, 𝑤, 𝑥)

• insertDirectedEdge(𝑣, 𝑤, 𝑥)

• eraseVertex 𝑣

• eraseEdge(𝑒)

• Many more generic/accessor methods

• Lists of entities provide iterators



EXERCISE ON ADT

1. 𝑜𝑟𝑑. incidentEdges()
2. 𝑜𝑟𝑑. adjacentVertices()
3. 𝑜𝑟𝑑. degree()
4. 𝑙𝑔𝑎,𝑚𝑖𝑎 . endVertices()

5. 𝑑𝑓𝑤, 𝑙𝑔𝑎 . opposite(𝑑𝑓𝑤)

6. 𝑑𝑓𝑤. isAdjacentTo(𝑠𝑓𝑜)

7. insertVertex(𝑖𝑎ℎ)
8. insertEdge(𝑚𝑖𝑎, 𝑝𝑣𝑑, 1200)

9. eraseVertex(𝑜𝑟𝑑)
10. eraseEdge(𝑑𝑓𝑤, 𝑜𝑟𝑑)

11. 𝑑𝑓𝑤, 𝑙𝑔𝑎 . isDirected()

12. 𝑑𝑓𝑤, 𝑙𝑔𝑎 . origin()

13. 𝑑𝑓𝑤, 𝑙𝑔𝑎 . dest()
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EDGE LIST STRUCTURE

• An edge list can be stored in a 

sequence, a vector, a list or a 

dictionary such as a hash table
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EXERCISE
EDGE LIST STRUCTURE

• Construct the edge list for the following graph

u
x

y

v

z

a



ASYMPTOTIC PERFORMANCE
EDGE LIST STRUCTURE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Edge List

Space ?

endVertices(), opposite(), 
isIncidentOn(𝑣)

?

𝑣. incidentEdges(), 
𝑣. isAdjacentTo(𝑤)

?

insertVertex(𝑥), 
insertEdge(𝑢, 𝑣, 𝑤), 
eraseEdge(𝑒)

?

eraseVertex(𝑣) ?

(ORD, PVD)

(ORD, DFW)

(LGA, PVD)

(LGA, MIA)

(DFW, LGA)

849

802

142

1099

1387

(DFW, MIA) 1120

Edge List

ORD
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MIA

Vertex Sequence
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ASYMPTOTIC PERFORMANCE
EDGE LIST STRUCTURE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Edge List

Space 𝑂(𝑛 +𝑚)

endVertices(), opposite(), 
isIncidentOn(𝑣)

𝑂(1)

𝑣. incidentEdges(), 
𝑣. isAdjacentTo(𝑤)

𝑂(𝑚)

insertVertex(𝑥), 
insertEdge(𝑢, 𝑣, 𝑤), 
eraseEdge(𝑒)

𝑂(1)

eraseVertex(𝑣) 𝑂(𝑚)

(ORD, PVD)

(ORD, DFW)

(LGA, PVD)

(LGA, MIA)

(DFW, LGA)

849

802

142

1099

1387

(DFW, MIA) 1120

Edge List
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Vertex Sequence
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2

False

False

False

False

False

False

Weight Directed Degree



EDGE LIST STRUCTURE

• Vertex object

• element

• reference to position in vertex sequence

• Edge object

• element

• origin vertex object

• destination vertex object

• reference to position in edge sequence

• Vertex sequence

• sequence of vertex objects

• Edge sequence

• sequence of edge objects
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ADJACENCY LIST STRUCTURE

• Adjacency Lists associate edges with 

their end vertices

• Each vertex stores a list of incident 

edges
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EXERCISE
ADJACENCY LIST STRUCTURE

• Construct the adjacency list for the following graph
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ASYMPTOTIC PERFORMANCE
ADJACENCY LIST STRUCTURE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Adjacency List

Space ?

endVertices(), opposite(), 
isIncidentOn(𝑣)

?

𝑣. incidentEdges(), 
𝑣. isAdjacentTo(𝑤)

?

insertVertex(𝑥), 
insertEdge(𝑢, 𝑣, 𝑤), 
eraseEdge(𝑒)

?

eraseVertex(𝑣) ?
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(ORD, PVD)

Adjacency List

(ORD, DFW)

(LGA, PVD) (LGA, MIA)

(PVD, ORD) (PVD, LGA)

(LGA, DFW)

(DFW, ORD) (DFW, LGA) (DFW, MIA)

(MIA, LGA) (MIA, DFW)



ASYMPTOTIC PERFORMANCE
ADJACENCY LIST STRUCTURE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Adjacency List

Space 𝑂(𝑛 +𝑚)

endVertices(), opposite(), 
isIncidentOn(𝑣)

𝑂(1)

𝑣. incidentEdges(), 
𝑣. isAdjacentTo(𝑤)

𝑂 deg 𝑣
𝑂 min deg 𝑣 , deg 𝑤

insertVertex(𝑥), 
insertEdge(𝑢, 𝑣, 𝑤), 
eraseEdge(𝑒)

𝑂(1)

eraseVertex(𝑣) 𝑂 deg 𝑣
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ADJACENCY LIST STRUCTURE

• Store vertex sequence and edge sequence

• Each vertex stores a sequence of incident 
edges

• Sequence of references to edge objects of 
incident edges

• Augmented edge objects

• References to associated positions in 
incidence sequences of end vertices

u

v

w

a b

a

u v w

b



ADJACENCY MATRIX STRUCTURE

0 1 2 3 4

0 0 0 1 1 0

1 0 0 1 1 1

2 1 1 0 0 0

3 1 1 0 0 1

4 0 1 0 1 0

• Adjacency matrices store edges in a 

table, indexed by the vertex

0 2

4
3

1



EXERCISE
ADJACENCY MATRIX STRUCTURE

• Construct the adjacency matrix for the following graph

u
x
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a



ADJACENCY MATRIX STRUCTURE IN A 
WEIGHTED GRAPH

0
ORD

1 
LGA

2 
PVD

3 
DFW

4  
MIA

0 
ORD 0 0 849 802 0

1 
LGA 0 0 142 1387 1099

2 
PVD

849 142 0 0 0

3 
DFW 802 138 0 0 1120

4 
MIA 0 1099 0 1120 0

• Store edge object/property in 

table, or include a pointer to it 

inside of the table

0:ORD 2:PVD

4:MIA
3:DFW

1:LGA



EXERCISE
ADJACENCY MATRIX STRUCTURE: WEIGHTED DIGRAPH

0
ORD

1 
LGA

2 
PVD

3 
DFW

4  
MIA

0 
ORD

1 
LGA

2 
PVD

3 
DFW

4 
MIA

0:ORD 2:PVD

4:MIA
3:DFW

1:LGA



EXERCISE
ADJACENCY MATRIX STRUCTURE: WEIGHTED DIGRAPH

0
ORD

1 
LGA

2 
PVD

3 
DFW

4  
MIA

0 
ORD 0 0 849 0 0

1 
LGA 0 0 0 1387 1099

2 
PVD

0 142 0 0 0

3 
DFW 802 0 0 0 0

4 
MIA 0 0 0 1120 0

0:ORD 2:PVD

4:MIA
3:DFW

1:LGA



ASYMPTOTIC PERFORMANCE OF ADJACENCY 
MATRIX STRUCTURE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Adjacency Matrix

Space ?

endVertices(), opposite(), 
isIncidentOn(𝑣), 
𝑣. isAdjacentTo 𝑤

?

𝑣. incidentEdges() ?

insertEdge(𝑢, 𝑣, 𝑤), 
eraseEdge(𝑒)

?

insertVertex 𝑥 , 

eraseVertex(𝑣)
?

0 1 2 3 4

0 0 0 1 1 0

1 0 0 1 1 1

2 1 1 0 0 0

3 1 1 0 0 1

4 0 1 0 1 0



ASYMPTOTIC PERFORMANCE OF ADJACENCY 
MATRIX STRUCTURE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Adjacency Matrix

Space 𝑂(𝑛2)

endVertices(), opposite(), 
isIncidentOn(𝑣), 
𝑣. isAdjacentTo 𝑤

𝑂(1)

𝑣. incidentEdges() 𝑂 𝑛

insertEdge(𝑢, 𝑣, 𝑤), 
eraseEdge(𝑒)

𝑂(1)

insertVertex 𝑥 , 

eraseVertex(𝑣)
𝑂 𝑛2

0 1 2 3 4

0 0 0 1 1 0

1 0 0 1 1 1

2 1 1 0 0 0

3 1 1 0 0 1

4 0 1 0 1 0



ADJACENCY MATRIX STRUCTURE

• Augmented vertex objects

• Integer key (index) associated with vertex

• 2D-array adjacency array

• Reference to edge object for adjacent 

vertices

• Null for non nonadjacent vertices

• The “old fashioned” version just has 0 

for no edge and 1 for edge

u

v

w

a b

0 1 2

0  

1 

2  a

u v w0 1 2

b



ASYMPTOTIC PERFORMANCE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Edge 
List

Adjacency 
List

Adjacency 
Matrix

Space 𝑂(𝑛 +𝑚) 𝑂(𝑛 + 𝑚) 𝑂 𝑛2

endVertices(), opposite(), 
isIncidentOn(𝑣)

𝑂(1) 𝑂(1) 𝑂 1

𝑣. incidentEdges() 𝑂(𝑚) 𝑂 deg 𝑣 𝑂 𝑛

𝑣. isAdjacentTo(𝑤) 𝑂 𝑚 𝑂 min deg 𝑣 , deg 𝑤 𝑂 1

insertEdge(𝑢, 𝑣, 𝑤), 
eraseEdge(𝑒)

𝑂(1) 𝑂(1) 𝑂 1

insertVertex(𝑥) 𝑂 1 𝑂 1 𝑂(𝑛2)

eraseVertex(𝑣) 𝑂(𝑚) 𝑂 deg 𝑣 𝑂 𝑛2



DEPTH-FIRST SEARCH
DB

A

C

E



DEPTH-FIRST SEARCH

• Depth-first search (DFS) is a general 

technique for traversing a graph

• A DFS traversal of a graph 𝐺

• Visits all the vertices and edges of 𝐺

• Determines whether 𝐺 is connected

• Computes the connected components of 𝐺

• Computes a spanning forest of 𝐺

• DFS on a graph with n vertices and m 

edges takes 𝑂(𝑛 +𝑚) time

• DFS can be further extended to solve 

other graph problems

• Find and report a path between two 

given vertices

• Find a cycle in the graph

• Depth-first search is to graphs what 

Euler tour is to binary trees



EXAMPLE

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge

back edge

A visited vertex

A unexplored vertex

unexplored edge

𝐴(𝐴) = {𝑩, 𝐶, 𝐷, 𝐸}

𝐴(𝐵) = {𝑨, 𝐶, 𝐹}
𝐴(𝐵) = {𝐴, 𝑪, 𝐹}

𝐴(𝐶) = {𝑨, 𝐵, 𝐷, 𝐸}

F

F

FG

G

G

𝐴(𝐶) = {𝐴, 𝑩, 𝐷, 𝐸}
𝐴(𝐶) = {𝐴, 𝐵, 𝑫, 𝐸}



EXAMPLE

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

𝐴(𝐷) = {𝑨, 𝐶} 𝐴(𝐸) = {𝑨, 𝐶}

F F

F F

𝐴(𝐶) = {𝐴, 𝐵, 𝐷, 𝑬}𝐴(𝐶) = {𝐴, 𝐵,𝑫, 𝐸}

𝐴(𝐷) = {𝐴, 𝑪}
𝐴(𝐷) = {𝐴, 𝐶}

𝐴(𝐸) = {𝐴, 𝑪}
𝐴(𝐸) = {𝐴, 𝐶}

G

G

G

G



EXAMPLE
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𝐴(𝐶) = {𝐴, 𝐵, 𝐷, 𝐸}
𝐴(𝐵) = {𝐴, 𝐶, 𝑭}
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𝐴(𝐺) = ∅
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𝐴(𝐹) = {𝐵}

𝐴(𝐵) = {𝐴, 𝐶, 𝐹}
𝐴(𝐴) = {𝐴, 𝐵, 𝐶, 𝐷}
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DFS AND MAZE TRAVERSAL 

• The DFS algorithm is similar to a classic 

strategy for exploring a maze

• We mark each intersection, corner and 

dead end (vertex) visited

• We mark each corridor (edge) traversed

• We keep track of the path back to the 

entrance (start vertex) by means of a 

rope (recursion stack)



DFS ALGORITHM

• The algorithm uses a mechanism for setting and 

getting “labels” of vertices and edges

Algorithm DFS(𝐺)
Input: Graph 𝐺
Output: Labeling of the edges of 𝐺 as discovery 

edges

and back edges

1. for each 𝑣 ∈ 𝐺. vertices do

2. 𝑣. setLabel 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
3. for each 𝑒 ∈ 𝐺. edges do

4. 𝑒. setLabel(𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
5. for each 𝑣 ∈ 𝐺. vertices do

6. if 𝑣. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
7. DFS(𝐺, 𝑣)

Algorithm DFS(𝐺, 𝑣)
Input: Graph 𝐺 and a start vectex 𝑣
Output: Labeling of the edges of 𝐺 in the 

connected component of 𝑣 as discovery edges

and back edges

1. 𝑣. setLabel(𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
2. for each 𝑒 ∈ 𝑣. incidentEdges do

3. if 𝑒. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
4. 𝑤 ← 𝑒. opposite(𝑣)
5. if 𝑤. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
6. 𝑒. setLabel(𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
7. DFS(𝐺, 𝑤)
8. else

9. 𝑒. setLabel(𝐵𝐴𝐶𝐾)



EXERCISE
DFS ALGORITHM

• Perform DFS of the following graph, start from vertex A

• Assume adjacent edges are processed in alphabetical order

• Number vertices in the order they are visited

• Label edges as discovery or back edges
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PROPERTIES OF DFS

• Property 1

• DFS(𝐺, 𝑣) visits all the vertices and 

edges in the connected component of 𝑣

• Property 2

• The discovery edges labeled by 

DFS(𝐺, 𝑣) form a spanning tree of the 

connected component of 𝑣
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ANALYSIS OF DFS

• Setting/getting a vertex/edge label takes 𝑂(1) time

• Each vertex is labeled twice 

• once as 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷

• once as 𝑉𝐼𝑆𝐼𝑇𝐸𝐷

• Each edge is labeled twice

• once as 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷

• once as 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 or 𝐵𝐴𝐶𝐾

• Function DFS(𝐺, 𝑣) and the method incidentEdges are called once for each vertex

DB

A

C

E

F G



ANALYSIS OF DFS

• DFS runs in 𝑂(𝑛 +𝑚) time provided the graph is 

represented by the adjacency list structure

• Recall that Σ𝑣 deg 𝑣 = 2𝑚

Algorithm DFS(𝐺)
Input: Graph 𝐺
Output: Labeling of the edges of 𝐺 as discovery 

edges

and back edges

1. for each 𝑣 ∈ 𝐺. vertices do 𝑂(𝑛)
2. 𝑣. setLabel 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
3. for each 𝑒 ∈ 𝐺. edges do 𝑂(𝑚)
4. 𝑒. setLabel(𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
5. for each 𝑣 ∈ 𝐺. vertices do 𝑂(𝑛 + 𝑚)
6. if 𝑣. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
7. DFS(𝐺, 𝑣)

Algorithm DFS(𝐺, 𝑣)
Input: Graph 𝐺 and a start vectex 𝑣
Output: Labeling of the edges of 𝐺 in the 

connected component of 𝑣 as discovery edges

and back edges

1. 𝑣. setLabel(𝑉𝐼𝑆𝐼𝑇𝐸𝐷)

2. for each 𝑒 ∈ 𝑣. incidentEdges do 𝑂 𝑑𝑒𝑔 𝑣

3. if 𝑒. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
4. 𝑤 ← 𝑒. opposite(𝑣)
5. if 𝑤. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
6. 𝑒. setLabel(𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
7. DFS(𝐺, 𝑤)
8. else

9. 𝑒. setLabel(𝐵𝐴𝐶𝐾)



APPLICATION
PATH FINDING

• We can specialize the DFS algorithm to find a path 

between two given vertices 𝑢 and 𝑧 using the 

template method pattern

• We call DFS(𝐺, 𝑢) with 𝑢 as the start vertex

• We use a stack 𝑆 to keep track of the path 

between the start vertex and the current vertex

• As soon as destination vertex 𝑧 is encountered, we 

return the path as the contents of the stack 

Algorithm pathDFS(𝐺, 𝑣, 𝑧)
1. 𝑣. setLabel(𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
2. 𝑆. push(𝑣)
3. if 𝑣 = 𝑧
4. return 𝑆. elements( )
5. for each 𝑒 ∈ 𝑣. incidentEdges do

6. if 𝑒. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
7. 𝑤 ← 𝑒. opposite(𝑣)
8. if 𝑤. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
9. 𝑒. setLabel(𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
10. 𝑆. push(𝑒)
11. pathDFS 𝐺,𝑤
12. 𝑆. pop( )
13. else

14. 𝑒. setLabel(𝐵𝐴𝐶𝐾)
15. 𝑆. pop( )



APPLICATION
CYCLE FINDING

• We can specialize the DFS algorithm to find a 

simple cycle using the template method pattern

• We use a stack 𝑆 to keep track of the path 

between the start vertex and the current vertex

• As soon as a back edge 𝑣, 𝑤 is encountered, we 

return the cycle as the portion of the stack from the 

top to vertex 𝑤

Algorithm cycleDFS(𝐺, 𝑣, 𝑧)
1. 𝑣. setLabel(𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
2. 𝑆. push(𝑣)
3. for each 𝑒 ∈ 𝑣. incidentEdges do

4. if 𝑒. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
5. 𝑤 ← 𝑒. opposite(𝑣)
6. 𝑆. push 𝑒
7. if 𝑤. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
8. 𝑒. setLabel(𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
9. cycleDFS 𝐺,𝑤
10. 𝑆. pop( )
11. else

12. 𝑇 ← empty stack

13. repeat

14. 𝑇. push 𝑆. top

15. 𝑆. pop
16. until 𝑇. top = 𝑤
17. return 𝑇. elements
18. 𝑆. pop( )
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BREADTH-FIRST SEARCH

• Breadth-first search (BFS) is a general 

technique for traversing a graph

• A BFS traversal of a graph 𝐺

• Visits all the vertices and edges of 𝐺

• Determines whether 𝐺 is connected

• Computes the connected components of 𝐺

• Computes a spanning forest of 𝐺

• BFS on a graph with n vertices and m 

edges takes 𝑂(𝑛 +𝑚) time

• BFS can be further extended to solve 

other graph problems

• Find and report a path with the minimum 

number of edges between two given 

vertices 

• Find a simple cycle, if there is one
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BFS ALGORITHM

• The algorithm uses a mechanism for setting and getting 
“labels” of vertices and edges

Algorithm BFS(𝐺)
Input: Graph 𝐺
Output: Labeling of the edges and partition of the 

vertices of 𝐺
1. for each 𝑣 ∈ 𝐺. vertices do

2. 𝑣. setLabel(𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
3. for each 𝑒 ∈ 𝐺. edges( ) do

4. 𝑒. setLabel(𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
5. for each 𝑣 ∈ 𝐺. vertices( ) do

6. if 𝑣. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
7. BFS 𝐺, 𝑣

Algorithm BFS(𝐺, 𝑠)
1. 𝐿0 ← 𝑠
2. 𝑠. setLabel(𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
3. 𝑖 ← 0
4. while ¬𝐿𝑖 . empty( ) do

5. 𝐿𝑖+1 ← ∅
6. for each 𝑣 ∈ 𝐿𝑖 do

7. for each 𝑒 ∈ 𝑣. incidentEdges( ) do

8. if 𝑒. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
9. 𝑤 ← 𝑒. opposite 𝑣
10. if 𝑤. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
11. 𝑒. setLabel(𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
12. 𝑤. setLabel(𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
13. 𝐿𝑖+1 ← 𝐿𝑖+1 ∪ 𝑤
14. else

15. 𝑒. setLabel(𝐶𝑅𝑂𝑆𝑆)
16. 𝑖 ← 𝑖 + 1



EXERCISE
BFS ALGORITHM

• Perform BFS of the following graph, start from vertex A

• Assume adjacent edges are processed in alphabetical order

• Number vertices in the order they are visited and note the level they are in

• Label edges  as discovery or cross edges
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PROPERTIES

• Notation

• 𝐺𝑠: connected component of 𝑠

• Property 1

• BFS(𝐺, 𝑠) visits all the vertices and edges of 

𝐺𝑠

• Property 2

• The discovery edges labeled by BFS 𝐺, 𝑠
form a spanning tree 𝑇𝑠 of 𝐺𝑠

• Property 3

• For each vertex 𝑣 ∈ 𝐿𝑖
• The path of 𝑇𝑠 from 𝑠 to 𝑣 has 𝑖 edges 

• Every path from 𝑠 to 𝑣 in 𝐺𝑠 has at least 𝑖
edges
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ANALYSIS

• Setting/getting a vertex/edge label takes O(1) time

• Each vertex is labeled twice 

• once as UNEXPLORED

• once as VISITED

• Each edge is labeled twice

• once as UNEXPLORED

• once as DISCOVERY or CROSS

• Each vertex is inserted once into a sequence 𝐿𝑖

• Method incidentEdges( ) is called once for each vertex

• BFS runs in 𝑂 𝑛 +𝑚 time provided the graph is represented by the adjacency list structure

• Recall that Σ𝑣 deg 𝑣 = 2𝑚



ANALYSIS OF BFS

• The algorithm uses a mechanism for setting and getting “labels” 
of vertices and edges

Algorithm BFS(𝐺)

Input: Graph 𝐺

Output: Labeling of the edges and partition of the vertices of 𝐺

1. for each 𝑣 ∈ 𝐺. vertices do 𝑂(𝑛)

2. 𝑣. setLabel(𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)

3. for each 𝑒 ∈ 𝐺. edges( ) do 𝑂 𝑚

4. 𝑒. setLabel(𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)

5. for each 𝑣 ∈ 𝐺. vertices( ) do 𝑂 𝑛 +𝑚

6. if 𝑣. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷

7. BFS 𝐺, 𝑣

Algorithm BFS(𝐺, 𝑠)

1. 𝐿0 ← 𝑠

2. 𝑠. setLabel(𝑉𝐼𝑆𝐼𝑇𝐸𝐷)

3. 𝑖 ← 0

4. while ¬𝐿𝑖 . empty( ) do

5. 𝐿𝑖+1 ← ∅

6. for each 𝑣 ∈ 𝐿𝑖 do                    𝑂 𝑑𝑒𝑔 𝑣

7. for each 𝑒 ∈ 𝑣. incidentEdges( ) do

8. if 𝑒. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷

9. 𝑤 ← 𝑒. opposite 𝑣

10. if 𝑤. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷

11. 𝑒. setLabel(𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)

12. 𝑤. setLabel(𝑉𝐼𝑆𝐼𝑇𝐸𝐷)

13. 𝐿𝑖+1 ← 𝐿𝑖+1 ∪ 𝑤

14. else

15. 𝑒. setLabel(𝐶𝑅𝑂𝑆𝑆)

16. 𝑖 ← 𝑖 + 1



APPLICATIONS

• Using the template method pattern, we can specialize the BFS traversal of a 

graph 𝐺 to solve the following problems in 𝑂 𝑛 +𝑚 time

• Compute the connected components of 𝐺

• Compute a spanning forest of 𝐺

• Find a simple cycle in 𝐺, or report that 𝐺 is a forest

• Given two vertices of 𝐺, find a path in 𝐺 between them with the minimum number of 

edges, or report that no such path exists



DFS VS. BFS
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Applications DFS BFS

Spanning forest,
connected components, paths, cycles

 

Shortest paths 

Biconnected components 



DFS VS. BFS

Back edge 𝑣,𝑤

• 𝑤 is an ancestor of 𝑣 in the tree of 

discovery edges

Cross edge 𝑣,𝑤
• 𝑤 is in the same level as 𝑣 or in the 

next level in the tree of discovery 
edges
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